THE USE OF GRAPH THEORY IN A PARALLEL MULTIFRONTAL METHOD FOR SEQUENCES OF UNSYMMETRIC PATTERN SPARSE MATRICES
暂无分享,去创建一个
[1] I. Duff. Sparse Matrices and Their Uses. , 1983 .
[2] Iain S. Duff,et al. The Multifrontal Solution of Unsymmetric Sets of Linear Equations , 1984 .
[3] Iain S. Duff,et al. Parallel implementation of multifrontal schemes , 1986, Parallel Comput..
[4] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[5] Patrick Amestoy,et al. Vectorization of a Multiprocessor Multifrontal Code , 1989, Int. J. High Perform. Comput. Appl..
[6] Timothy A. Davis,et al. An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .
[7] Joseph W. H. Liu,et al. The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..
[8] Stephen E. Zitney,et al. Sparse matrix methods for chemical process separation calculations on supercomputers , 1992, Proceedings Supercomputing '92.
[9] Mark A. Stadtherr,et al. Supercomputing strategies for the design and analysis of complex separation systems , 1993 .
[10] Steven M. HADFIELDy,et al. A Parallel Unsymmetric-pattern Multifrontal Method , 1994 .
[11] Steven M. Hadfield. On The LU Factorization Of Sequences Of Identically Structured Sparse Matrices Within A Distributed , 1994 .