Maximum likelihood estimation of cardiac fiber bundle orientation from arbitrarily spaced diffusion weighted images

HighlightsNew estimation scheme for local fiber direction in the left ventricle directly from gray values of arbitrarily spaced cardiac diffusion weighted images.Does not require voxelwise matching of diffusion data for DT‐calculation.Considerably better performance than state‐of‐the art, the curvilinear tensor interpolation. Graphical abstract Figure. No Caption available. ABSTRACT We propose an estimation scheme for local fiber bundle direction in the left ventricle directly from gray values of arbitrarily spaced cardiac diffusion weighted images (DWI). The approach is based on a parametric and space‐dependent mathematical representation of the myocardial fiber bundle orientation and hence the diffusion tensor (DT) for the ventricular geometry. By solving a nonlinear inverse problem derived from a maximum likelihood estimator, the degrees of freedom of the fiber and DT model can be estimated from the measured gray values of the DWIs. The continuity of the DT model allows to relax the restriction to the individual DWIs to match spatially like for voxelwise DT calculation. Hence, the spatial misalignment between image slices with different diffusion encoding directions, that is encountered in‐vivo cardiac imaging practice can be integrated into the estimation scheme. This feature results then in a negligible impact of the spatial misalignment on the reconstructed solution. We illustrate the methodology using synthetic data and compare it against a previously reported fiber bundle reconstruction technique. To show the potential for real data, we also present results for multi‐slice data constructed from ex‐vivo cardiac diffusion weighted measurements in both mono‐ and bi‐ventricular configurations.

[1]  Michael I. Miller,et al.  Image-Based Estimation of Ventricular Fiber Orientations for Personalized Modeling of Cardiac Electrophysiology , 2012, IEEE Transactions on Medical Imaging.

[2]  Dinggang Shen,et al.  Estimating myocardial fiber orientations by template warping , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[3]  Hervé Delingette,et al.  Human Atlas of the Cardiac Fiber Architecture: Study on a Healthy Population , 2012, IEEE Transactions on Medical Imaging.

[4]  David R. Anderson,et al.  Multimodel Inference , 2004 .

[5]  E. Abt Understanding statistics 3 , 2010, Evidence-Based Dentistry.

[6]  David Atkinson,et al.  Spin echo versus stimulated echo diffusion tensor imaging of the in vivo human heart , 2015, Magnetic resonance in medicine.

[7]  David Atkinson,et al.  In vivo myofibre architecture in the systemic right ventricle. , 2013, European heart journal.

[8]  J. Hurlé,et al.  Myocardial fiber architecture of the human heart ventricles , 1982, The Anatomical record.

[9]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[10]  Rohan Dharmakumar,et al.  In vivo three‐dimensional high resolution cardiac diffusion‐weighted MRI: A motion compensated diffusion‐prepared balanced steady‐state free precession approach , 2014, Magnetic resonance in medicine.

[11]  Dd. Streeter,et al.  Gross morphology and fiber geometry of the heart , 1979 .

[12]  R. Winslow,et al.  Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. , 1998, The American journal of physiology.

[13]  G. Plank,et al.  A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models , 2012, Annals of Biomedical Engineering.

[14]  Wolfgang A. Wall,et al.  Cardiac Fibers Estimation from Arbitrarily Spaced Diffusion Weighted MRI , 2015, FIMH.

[15]  David Atkinson,et al.  Dual-Phase Cardiac Diffusion Tensor Imaging with Strain Correction , 2014, PLoS ONE.

[16]  Richard H. Byrd,et al.  Approximate solution of the trust region problem by minimization over two-dimensional subspaces , 1988, Math. Program..

[17]  Alejandro F. Frangi,et al.  Analysis of the helix and transverse angles of the muscle fibers in the myocardium based on Diffusion Tensor Imaging , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[18]  L. Younes,et al.  Evidence of Structural Remodeling in the Dyssynchronous Failing Heart , 2005, Circulation research.

[19]  Maxime Sermesant,et al.  In vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing , 2013, Medical Image Anal..

[20]  Daniel B Ennis,et al.  Myofiber angle distributions in the ovine left ventricle do not conform to computationally optimized predictions. , 2008, Journal of biomechanics.

[21]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[22]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association , 2002, The international journal of cardiovascular imaging.

[23]  J. Ross,et al.  Fiber Orientation in the Canine Left Ventricle during Diastole and Systole , 1969, Circulation research.

[24]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[25]  Alejandro F. Frangi,et al.  Statistically-driven 3D fiber reconstruction and denoising from multi-slice cardiac DTI using a Markov random field model , 2016, Medical Image Anal..

[26]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[27]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[28]  Natalia A Trayanova,et al.  Patient-specific modeling of the heart: estimation of ventricular fiber orientations. , 2013, Journal of visualized experiments : JoVE.

[29]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[30]  Todd S. Sachs,et al.  Real‐time motion detection in spiral MRI using navigators , 1994, Magnetic resonance in medicine.

[31]  Thomas F. Coleman,et al.  A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems , 1999, SIAM J. Sci. Comput..

[32]  C. Henriquez,et al.  Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. , 1998, American journal of physiology. Heart and circulatory physiology.

[33]  Thorsten Feiweier,et al.  In vivo diffusion tensor MRI of the human heart: Reproducibility of breath‐hold and navigator‐based approaches , 2013, Magnetic resonance in medicine.

[34]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[35]  Wolfgang A. Wall,et al.  Personalization of Cardiac Fiber Orientations from Image Data Using the Unscented Kalman Filter , 2013, FIMH.

[36]  Shihua Zhao,et al.  Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance , 2015, Journal of Cardiovascular Magnetic Resonance.

[37]  Herve Lombaert,et al.  Joint Statistics on Cardiac Shape and Fiber Architecture , 2013, MICCAI.

[38]  Jorge Nocedal,et al.  An interior algorithm for nonlinear optimization that combines line search and trust region steps , 2006, Math. Program..

[39]  Alejandro F. Frangi,et al.  Statistical Personalization of Ventricular Fiber Orientation Using Shape Predictors , 2014, IEEE Transactions on Medical Imaging.

[40]  Karen Willcox,et al.  Hessian‐based model reduction: large‐scale inversion and prediction , 2013 .

[41]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[42]  Michael Ortiz,et al.  A spatially varying mathematical representation of the biventricular cardiac fiber architecture , 2016 .

[43]  David Atkinson,et al.  Second‐order motion‐compensated spin echo diffusion tensor imaging of the human heart , 2016, Magnetic resonance in medicine.

[44]  Andreas Schuster,et al.  Noninvasive estimation of pulmonary outflow tract obstruction: a comparative study of phase contrast CMR and Doppler echocardiography versus cardiac catheterization , 2015, Journal of Cardiovascular Magnetic Resonance.

[45]  Peter Boesiger,et al.  Diffusion imaging of the in vivo heart using spin echoes–considerations on bulk motion sensitivity , 2007, Magnetic resonance in medicine.

[46]  Kaleem Siddiqi,et al.  Maurer-Cartan Forms for Fields on Surfaces: Application to Heart Fiber Geometry , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Sheng-Kwei Song,et al.  Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI. , 2003, American journal of physiology. Heart and circulatory physiology.

[48]  H. Akaike A new look at the statistical model identification , 1974 .

[49]  Peter Savadjiev,et al.  Heart wall myofibers are arranged in minimal surfaces to optimize organ function , 2012, Proceedings of the National Academy of Sciences.

[50]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[51]  D. L. Bassett,et al.  An engineering analysis of myocardial fiber orientation in pig's left ventricle in systole , 1966 .