An Approach to Graph and Netlist Compression

We introduce an EDIF netlist graph-based compression algorithm which is lossy with respect to the original byte stream but lossless in terms of the circuit information it contains. The algorithm builds on the graph mining tool SUBDUE. Our algorithm, CEDIF (compressed EDIF), compresses the EDIF file to a size about 39% of the size of the compressed file resulting from the state-of-the-art PAQ text compression algorithm and to about 85% of the size of a GRAPHITOUR-like graph compression algorithm.

[1]  George Karypis,et al.  Finding Frequent Patterns in a Large Sparse Graph* , 2005, Data Mining and Knowledge Discovery.

[2]  Matthew V. Mahoney,et al.  Adaptive weighing of context models for lossless data compression , 2005 .

[3]  Narsingh Deo,et al.  A Structural Approach to Graph Compression , 1998 .

[4]  Alon Itai,et al.  Representation of graphs , 1982, Acta Informatica.

[5]  James Cheney Compressing XML with multiplexed hierarchical PPM models , 2001, Proceedings DCC 2001. Data Compression Conference.

[6]  Weifeng Sun,et al.  A dictionary-based multi-corpora text compression system , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[7]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[8]  Lawrence B. Holder,et al.  Substructure Discovery Using Minimum Description Length and Background Knowledge , 1993, J. Artif. Intell. Res..

[9]  Dan Suciu,et al.  XMill: an efficient compressor for XML data , 2000, SIGMOD 2000.

[10]  Gonzalo Navarro,et al.  A Fast and Compact Web Graph Representation , 2007, SPIRE.

[11]  Lawrence B. Holder,et al.  Structural Pattern Recognition in Graphs , 2003 .

[12]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[13]  Maurizio Talamo,et al.  Representing graphs implicitly using almost optimal space , 2001, Discret. Appl. Math..

[14]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[15]  Lawrence B. Holder,et al.  Mining Graph Data: Cook/Mining Graph Data , 2006 .

[16]  A. John MINING GRAPH DATA , 2022 .

[17]  Guy E. Blelloch,et al.  Compact data structures with fast queries , 2006 .

[18]  Harold Neil Gabow,et al.  Implementation of algorithms for maximum matching on nonbipartite graphs , 1973 .

[19]  Leonid Peshkin,et al.  Structure induction by lossless graph compression , 2007, 2007 Data Compression Conference (DCC'07).

[20]  Weimin Li,et al.  XCOMP: AN XML COMPRESSION TOOL , 2003 .

[21]  Gonzalo Navarro,et al.  Lempel-Ziv compression of structured text , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[22]  Wei Wang,et al.  Efficient mining of frequent subgraphs in the presence of isomorphism , 2003, Third IEEE International Conference on Data Mining.

[23]  Thomas M. Cover,et al.  Elements of Information Theory: Cover/Elements of Information Theory, Second Edition , 2005 .

[24]  Joost N. Kok,et al.  A quickstart in frequent structure mining can make a difference , 2004, KDD.

[25]  Xin He,et al.  Linear-Time Succinct Encodings of Planar Graphs via Canonical Orderings , 1999, SIAM J. Discret. Math..

[26]  Mark A. Pitt,et al.  Advances in Minimum Description Length: Theory and Applications , 2005 .