Observation of dielectric resonance and negative capacitance in 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 textured thin films

[1]  Gemeng Liang,et al.  The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range , 2022, Advanced Composites and Hybrid Materials.

[2]  Qian He,et al.  Negative Capacitance Phenomenon and Origin in Alkali Niobate Film with Self‐Assembled Lattice Faults , 2022, Advanced Electronic Materials.

[3]  Hailiang Du,et al.  Negative Permittivity Behaviors Derived from Dielectric Resonance and Plasma Oscillation in Percolative Bismuth Ferrite/Silver Composites , 2022, The Journal of Physical Chemistry C.

[4]  Yuehua Wu,et al.  Flexible polystyrene/graphene composites with epsilon-near-zero properties , 2022, Advanced Composites and Hybrid Materials.

[5]  Zhanhu Guo,et al.  Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites , 2022, Advanced Composites and Hybrid Materials.

[6]  W. Ye,et al.  Investigation on the fabrication and properties of Ce-doped PMN–PT translucent piezoelectric ceramics , 2021, Journal of Materials Science: Materials in Electronics.

[7]  Shi-feng Huang,et al.  Enhanced Ferroelectric, Dielectric Properties of Fe-Doped PMN-PT Thin Films , 2021, Nanomaterials.

[8]  Menghao Wu 100 years of ferroelectricity , 2021, Nature Reviews Physics.

[9]  S. Slesazeck,et al.  Ferroelectric field-effect transistors based on HfO2: a review , 2021, Nanotechnology.

[10]  F. Pan,et al.  Observation of negative capacitance in antiferroelectric PbZrO3 Films , 2021, Nature Communications.

[11]  Michael J. Hoffmann,et al.  Progress and future prospects of negative capacitance electronics: A materials perspective , 2021, APL Materials.

[12]  L. Martin,et al.  Growth mode and strain effect on relaxor ferroelectric domains in epitaxial 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3/SrRuO3 heterostructures , 2021, RSC advances.

[13]  D. Suvorov,et al.  Stabilization of the perovskite phase in PMN-PT epitaxial thin films via increased interface roughness , 2020 .

[14]  Shujun Zhang,et al.  Diffused morphotropic phase boundary in relaxor-PbTiO3 crystals: High piezoelectricity with improved thermal stability , 2020 .

[15]  T. Tallman The effect of thermal loading on negative permittivity in carbon nanofiber/silicone metacomposites , 2020 .

[16]  Qilin Gu,et al.  Design and analysis of negative permittivity behaviors in barium titanate/nickel metacomposites , 2020 .

[17]  Zhanhu Guo,et al.  Direct Observation of Stable Negative Capacitance in SrTiO3@BaTiO3 Heterostructure , 2019, Advanced Electronic Materials.

[18]  I. K. Bhat,et al.  AlN-SWCNT Metacomposites Having Tunable Negative Permittivity in Radio and Microwave Frequencies. , 2019, ACS applied materials & interfaces.

[19]  Zhanhu Guo,et al.  Tunable Negative Permittivity in Flexible Graphene/PDMS Metacomposites , 2019, The Journal of Physical Chemistry C.

[20]  C. Hwang,et al.  Modeling of Negative Capacitance in Ferroelectric Thin Films , 2019, Advanced materials.

[21]  J. Shieh,et al.  Negative capacitance from the inductance of ferroelectric switching , 2019, Communications Physics.

[22]  Zhuo Xu,et al.  Ultrahigh piezoelectricity in ferroelectric ceramics by design , 2018, Nature Materials.

[23]  M. Murakami,et al.  Stabilization heat treatment and functional response of 0.65[Pb(Mg1/3Nb2/3)O3]-0.35[PbTiO3] ceramics , 2017 .

[24]  Jacob L. Jones,et al.  Thickness‐dependent domain wall reorientation in 70/30 lead magnesium niobate‐ lead titanate thin films , 2017 .

[25]  Long-Qing Chen,et al.  The Contributions of Polar Nanoregions to the Dielectric and Piezoelectric Responses in Domain‐Engineered Relaxor‐PbTiO3 Crystals , 2017 .

[26]  S. Tsukada,et al.  Role of polar nanoregions with weak random fields in Pb-based perovskite ferroelectrics , 2017, Scientific Reports.

[27]  J. Íñiguez,et al.  Negative capacitance in multidomain ferroelectric superlattices , 2016, Nature.

[28]  Young Jae Kwon,et al.  Time-Dependent Negative Capacitance Effects in Al2O3/BaTiO3 Bilayers. , 2016, Nano letters.

[29]  Xiaolin Wang,et al.  Dielectric properties and energy-storage performances of (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 relaxor ferroelectric thin films , 2015, Journal of Materials Science: Materials in Electronics.

[30]  Z. Ye,et al.  Fano resonance and dipolar relaxation in lead-free relaxors , 2014, Nature Communications.

[31]  P. Bharathi,et al.  Grain and the concomitant ferroelectric domain size dependent physical properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics fabricated using powders derived from oxalate precursor route , 2014 .

[32]  L. You,et al.  Negative capacitance in a ferroelectric capacitor. , 2014, Nature materials.

[33]  A. O'Neill,et al.  Experimental observation of negative capacitance in ferroelectrics at room temperature. , 2014, Nano letters.

[34]  Y. Yoon,et al.  Effects of preferred orientation on the piezoelectric properties of Pt/Pb(Zr0.3Ti0.7)O3/Pt thin films grown by sol–gel process , 2009 .

[35]  S. Gevorgian,et al.  Ferroelectric thin films: Review of materials, properties, and applications , 2006 .

[36]  S. Dey,et al.  Highly textured Pb(Zr_0.3Ti_0.7)O_3 thin films on GaN/sapphire by metalorganic chemical vapor deposition , 2006 .

[37]  S. B. Krupanidhi,et al.  Effect of electric field on dielectric response of PMN-PT thin films , 2004 .

[38]  Yoon J. Song,et al.  Low temperature fabrication and properties of sol-gel derived (111) oriented Pb(Zr1−xTix)O3 thin films , 1998 .

[39]  Valerii M. Vinokur,et al.  Vortices in high-temperature superconductors , 1994 .

[40]  Huang,et al.  Dielectric continuum model and Fröhlich interaction in superlattices. , 1988, Physical review. B, Condensed matter.

[41]  Zhanhu Guo,et al.  Negative Permittivity Behavior in Flexible Carbon Nanofibers- Polydimethylsiloxane Films , 2021, Engineered Science.

[42]  S. Trolier-McKinstry,et al.  Dielectric and piezoelectric properties of sol–gel derived lead magnesium niobium titanate films with different textures , 2001 .