A Two-Layer Biophysical Model of Cholinergic Neuromodulation in Olfactory Bulb

Cholinergic inputs from the basal forebrain regulate multiple olfactory bulb (OB) functions, including odor discrimination, perceptual learning, and short-term memory. Previous studies have shown that nicotinic cholinergic receptor activation sharpens mitral cell chemoreceptive fields, likely via intraglomerular circuitry. Muscarinic cholinergic activation is less well understood, though muscarinic receptors are implicated in olfactory learning and in the regulation of synchronized oscillatory dynamics in hippocampus and cortex. To understand the mechanisms underlying cholinergic neuromodulation in OB, we developed a biophysical model of the OB neuronal network including both glomerular layer and external plexiform layer (EPL) computations and incorporating both nicotinic and muscarinic neuromodulatory effects. Our simulations show how nicotinic activation within glomerular circuits sharpens mitral cell chemoreceptive fields, even in the absence of EPL circuitry, but does not facilitate intrinsic oscillations or spike synchronization. In contrast, muscarinic receptor activation increases mitral cell spike synchronization and field oscillatory power by potentiating granule cell excitability and lateral inhibitory interactions within the EPL, but it has little effect on mitral cell firing rates and hence does not sharpen olfactory representations under a rate metric. These results are consistent with the theory that EPL interactions regulate the timing, rather than the existence, of mitral cell action potentials and perform their computations with respect to a spike timing-based metric. This general model suggests that the roles of nicotinic and muscarinic receptors in olfactory bulb are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.

[1]  G. Eagleson,et al.  The distribution of the size and number of mitral cells in the olfactory bulb of the rat. , 1985, Journal of anatomy.

[2]  F. Kermen,et al.  Learning‐dependent neurogenesis in the olfactory bulb determines long‐term olfactory memory , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  Thomas A. Cleland,et al.  How Spike Synchronization Among Olfactory Neurons Can Contribute to Sensory Discrimination , 2001, Journal of Computational Neuroscience.

[4]  R. Nicoll,et al.  Voltage clamp analysis of cholinergic action in the hippocampus , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  N. Kopell,et al.  Biophysical model for gamma rhythms in the olfactory bulb via subthreshold oscillations , 2009, Proceedings of the National Academy of Sciences.

[6]  Brice Bathellier,et al.  Circuit properties generating gamma oscillations in a network model of the olfactory bulb. , 2006, Journal of neurophysiology.

[7]  X. Wang,et al.  Ionic basis for intrinsic 40 Hz neuronal oscillations. , 1993, Neuroreport.

[8]  J. Vincent,et al.  Control of Action Potential Timing by Intrinsic Subthreshold Oscillations in Olfactory Bulb Output Neurons , 1999, The Journal of Neuroscience.

[9]  Matthew E. Phillips,et al.  Lateral Connectivity in the Olfactory Bulb is Sparse and Segregated , 2011, Front. Neural Circuits..

[10]  Antoniu L. Fantana,et al.  Rat Olfactory Bulb Mitral Cells Receive Sparse Glomerular Inputs , 2008, Neuron.

[11]  Andrew P. Davison,et al.  A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb , 2000, Brain Research Bulletin.

[12]  B. Strowbridge,et al.  Transient activity induces a long-lasting increase in the excitability of olfactory bulb interneurons. , 2008, Journal of neurophysiology.

[13]  Xiao-Jing Wang,et al.  What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. , 2003, Journal of neurophysiology.

[14]  R. Doty,et al.  Physostigmine Enhances Performance on an Odor Mixture Discrimination Test , 1998, Physiology & Behavior.

[15]  Michael L. Hines,et al.  Mitral cell spike synchrony modulated by dendrodendritic synapse location , 2012, Front. Comput. Neurosci..

[16]  J. Midtgaard,et al.  Regulation of granule cell excitability by a low-threshold calcium spike in turtle olfactory bulb. , 2003, Journal of neurophysiology.

[17]  Thomas A Cleland,et al.  Dynamical mechanisms of odor processing in olfactory bulb mitral cells. , 2006, Journal of neurophysiology.

[18]  Praveen Sethupathy,et al.  Non-topographical contrast enhancement in the olfactory bulb , 2006, BMC Neuroscience.

[19]  Brett A. Johnson,et al.  Relational representation in the olfactory system , 2007, Proceedings of the National Academy of Sciences.

[20]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[21]  F. Roman,et al.  Learning and memory of odor-reward association: selective impairment following horizontal diagonal band lesions. , 1993, Behavioral neuroscience.

[22]  L. Haberly,et al.  Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. , 2003, Journal of neurophysiology.

[23]  Rainer W Friedrich,et al.  Recent dynamics in olfactory population coding , 2001, Current Opinion in Neurobiology.

[24]  Brice Bathellier,et al.  GABAergic inhibition at dendrodendritic synapses tunes γ oscillations in the olfactory bulb , 2007, Proceedings of the National Academy of Sciences.

[25]  M. Hasselmo,et al.  Selective loss of cholinergic neurons projecting to the olfactory system increases perceptual generalization between similar, but not dissimilar, odorants. , 2001, Behavioral neuroscience.

[26]  Thomas A. Cleland,et al.  Decorrelation of Odor Representations via Spike Timing-Dependent Plasticity , 2010, Front. Comput. Neurosci..

[27]  Donald A. Wilson,et al.  Acetylcholine and olfactory perceptual learning. , 2004, Learning & memory.

[28]  F. Macrides,et al.  Cholinergic and catecholaminergic afferents to the olfactory bulb in the Hamster: A neuroanatomical, biochemical, and histochemical investigation , 1981, The Journal of comparative neurology.

[29]  L. Heimer,et al.  Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band , 1986, The Journal of comparative neurology.

[30]  B. Torres,et al.  Modulation of the input–output function by GABAA receptor-mediated currents in rat oculomotor nucleus motoneurons , 2014, The Journal of physiology.

[31]  L. Cadetti,et al.  Hyperpolarisation-activated current in glomerular cells of the rat olfactory bulb , 2001, Neuroreport.

[32]  D. Wellis,et al.  Intracellular responses of identified rat olfactory bulb interneurons to electrical and odor stimulation. , 1990, Journal of neurophysiology.

[33]  M. T. Shipley,et al.  Centre–surround inhibition among olfactory bulb glomeruli , 2003, Nature.

[34]  Terrence J. Sejnowski,et al.  Synaptic Learning Rules and Sparse Coding in a Model Sensory System , 2008, PLoS Comput. Biol..

[35]  K. Delaney,et al.  Contribution of a Calcium‐Activated Non‐Specific Conductance to NMDA Receptor‐Mediated Synaptic Potentials in Granule Cells of the Frog Olfactory Bulb , 2002, The Journal of physiology.

[36]  Minmin Luo,et al.  Response Correlation Maps of Neurons in the Mammalian Olfactory Bulb , 2001, Neuron.

[37]  Leslie M. Kay,et al.  Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system , 2008, Cognitive Neurodynamics.

[38]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[39]  X. Wang Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons , 1999, Neuroscience.

[40]  L. C. Katz,et al.  Electrophysiology of interneurons in the glomerular layer of the rat olfactory bulb. , 2001, Journal of neurophysiology.

[41]  R. Nicoll,et al.  Dendrodendritic inhibition: demonstration with intracellular recording. , 1980, Science.

[42]  Thomas A. Cleland,et al.  Lateral dendritic shunt inhibition can regularize mitral cell spike patterning , 2008, Journal of Computational Neuroscience.

[43]  R. Araneda,et al.  Cholinergic modulation of neuronal excitability in the accessory olfactory bulb. , 2010, Journal of neurophysiology.

[44]  Gongyu Y. Shen,et al.  Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings. , 1999, Journal of neurophysiology.

[45]  G. Tamás,et al.  Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro , 1998, The Journal of physiology.

[46]  Tsuyoshi Inoue,et al.  Muscarinic Receptor Activation Modulates Granule Cell Excitability and Potentiates Inhibition onto Mitral Cells in the Rat Olfactory Bulb , 2007, The Journal of Neuroscience.

[47]  Minmin Luo,et al.  Optogenetic Activation of Basal Forebrain Cholinergic Neurons Modulates Neuronal Excitability and Sensory Responses in the Main Olfactory Bulb , 2012, The Journal of Neuroscience.

[48]  N. Schoppa,et al.  Synchronization of Olfactory Bulb Mitral Cells by Precisely Timed Inhibitory Inputs , 2006, Neuron.

[49]  Thomas A. Cleland,et al.  On-Center/Inhibitory-Surround Decorrelation via Intraglomerular Inhibition in the Olfactory Bulb Glomerular Layer , 2012, Front. Integr. Neurosci..

[50]  J. Isaacson,et al.  Olfactory Reciprocal Synapses: Dendritic Signaling in the CNS , 1998, Neuron.

[51]  David H Gire,et al.  Control of On/Off Glomerular Signaling by a Local GABAergic Microcircuit in the Olfactory Bulb , 2009, The Journal of Neuroscience.

[52]  Gordon M. Shepherd,et al.  Dendritic action potentials connect distributed dendrodendritic microcircuits , 2008, Journal of Computational Neuroscience.

[53]  G. Laurent,et al.  Impaired odour discrimination on desynchronization of odour-encoding neural assemblies , 1997, Nature.

[54]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[55]  J. Bower,et al.  Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. , 1993, Journal of neurophysiology.

[56]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[57]  O. Paulsen,et al.  Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro , 1998, Nature.

[58]  Thomas A Cleland,et al.  Multiple learning parameters differentially regulate olfactory generalization. , 2009, Behavioral neuroscience.

[59]  M. Hasselmo,et al.  Modulation of the input/output function of rat piriform cortex pyramidal cells. , 1994, Journal of neurophysiology.

[60]  F. Jourdan,et al.  Developmental and aging aspects of the cholinergicinnervation of the olfactory bulb , 1998, International Journal of Developmental Neuroscience.

[61]  Michael L. Hines,et al.  The Role of Distal Dendritic Gap Junctions in Synchronization of Mitral Cell Axonal Output , 2005, Journal of Computational Neuroscience.

[62]  Thomas A Cleland,et al.  How synchronization properties among second-order sensory neurons can mediate stimulus salience. , 2002, Behavioral neuroscience.

[63]  Alan Carleton,et al.  Encoding Odorant Identity by Spiking Packets of Rate-Invariant Neurons in Awake Mice , 2012, PloS one.

[64]  Thomas A Cleland,et al.  Cholinergic modulation in the olfactory bulb influences spontaneous olfactory discrimination in adult rats , 2006, The European journal of neuroscience.

[65]  Thomas A. Cleland,et al.  Early transformations in odor representation , 2010, Trends in Neurosciences.

[66]  Nicolas Brunel,et al.  Sensory neural codes using multiplexed temporal scales , 2010, Trends in Neurosciences.

[67]  G. Westbrook,et al.  Regulation of synaptic timing in the olfactory bulb by an A-type potassium current , 1999, Nature Neuroscience.

[68]  J. McKenzie,et al.  Whole‐cell K+ currents in identified olfactory bulb output neurones of rats. , 1996, The Journal of physiology.

[69]  Vikrant Kapoor,et al.  Activity-dependent gating of lateral inhibition in the mouse olfactory bulb , 2008, Nature Neuroscience.

[70]  Ramani Balu,et al.  Phasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells. , 2004, Journal of neurophysiology.

[71]  Gordon M Shepherd,et al.  Membrane and synaptic properties of mitral cells in slices of rat olfactory bulb , 1997, Brain Research.

[72]  Christiane Linster,et al.  Bulbar Acetylcholine Enhances Neural and Perceptual Odor Discrimination , 2009, The Journal of Neuroscience.

[73]  Alan Gelperin,et al.  Sparse Odor Coding in Awake Behaving Mice , 2006, The Journal of Neuroscience.

[74]  G M Shepherd,et al.  Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. , 1966, Experimental neurology.

[75]  N. Uchida,et al.  Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. , 1999, Journal of neurophysiology.

[76]  J S Kauer,et al.  GABAergic and glutamatergic synaptic input to identified granule cells in salamander olfactory bulb. , 1994, The Journal of physiology.

[77]  G. Buzsáki,et al.  Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. , 1996, The Journal of physiology.

[78]  F. Jourdan,et al.  Comparative laminar distribution of various autoradiographic cholinergic markers in adult rat main olfactory bulb , 1995, Journal of Chemical Neuroanatomy.

[79]  C. Linster,et al.  Odor perception and olfactory bulb plasticity in adult mammals. , 2009, Journal of Neurophysiology.

[80]  T. Kosaka,et al.  Synaptic organization of the glomerulus in the main olfactory bulb: Compartments of the glomerulus and heterogeneity of the periglomerular cells , 2005, Anatomical science international.

[81]  Alan Carleton,et al.  Interplay between Local GABAergic Interneurons and Relay Neurons Generates γ Oscillations in the Rat Olfactory Bulb , 2004, The Journal of Neuroscience.

[82]  H. Kaba,et al.  Muscarinic receptor type 1 (M1) stimulation, probably through KCNQ/Kv7 channel closure, increases spontaneous GABA release at the dendrodendritic synapse in the mouse accessory olfactory bulb , 2010, Brain Research.

[83]  N. Mandairon,et al.  Compensatory responses to age-related decline in odor quality acuity: Cholinergic neuromodulation and olfactory enrichment , 2011, Neurobiology of Aging.

[84]  E Kiyokage,et al.  Two GABAergic intraglomerular circuits differentially regulate tonic and phasic presynaptic inhibition of olfactory nerve terminals. , 2009, Journal of neurophysiology.

[85]  Jianfeng Feng,et al.  Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. , 2003, Journal of neurophysiology.

[86]  Jianhua Cang,et al.  In Vivo Whole-Cell Recording of Odor-Evoked Synaptic Transmission in the Rat Olfactory Bulb , 2003, The Journal of Neuroscience.

[87]  W. Singer,et al.  Short- and Long-Term Effects of Cholinergic Modulation on Gamma Oscillations and Response Synchronization in the Visual Cortex , 2004, The Journal of Neuroscience.

[88]  A. Carleton,et al.  Multiple and Opposing Roles of Cholinergic Transmission in the Main Olfactory Bulb , 1999, The Journal of Neuroscience.

[89]  T. H. Brown,et al.  Biophysical model of a Hebbian synapse. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[90]  A. Gelperin,et al.  Presynaptic muscarinic receptors enhance glutamate release at the mitral/tufted to granule cell dendrodendritic synapse in the rat main olfactory bulb. , 2009, Journal of neurophysiology.

[91]  R. D. D'Souza,et al.  Nicotinic Receptor-Mediated Filtering of Mitral Cell Responses to Olfactory Nerve Inputs Involves the α3β4 Subtype , 2012, The Journal of Neuroscience.

[92]  Etienne Hugues,et al.  Specific Entrainment of Mitral Cells during Gamma Oscillation in the Rat Olfactory Bulb , 2009, PLoS Comput. Biol..

[93]  S. Nakanishi,et al.  Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[94]  M. T. Shipley,et al.  Centre–surround inhibition among olfactory bulb glomeruli , 2003 .