Chromium and tantalum site substitution patterns in Ni3Al(L12) γ′-precipitates

The site substitution behavior of Cr and Ta in the Ni3Al(L12)-type γ′-precipitates of a Ni–Al–Cr–Ta alloy is investigated by atom-probe tomography (APT) and first-principles calculations. Measurements of the γ′-phase composition by APT suggest that Al, Cr, and Ta share the Al sublattice sites of the γ′-precipitates. The calculated substitutional energies of the solute atoms at the Ni and Al sublattice sites indicate that Ta has a strong preference for the Al sites, while Cr has a weak Al site preference. Furthermore, Ta is shown to replace Cr at the Al sublattice sites of the γ′-precipitates, altering the elemental phase partitioning behavior of the Ni–Al–Cr–Ta alloy.

[1]  V. S. Raghunathan,et al.  A study of ternary element site substitution in Ni3Al using pseudopotential orbital radii based structure maps , 1996 .

[2]  O. Semenova,et al.  Energetics of point defect formation in Ni3Al , 2002 .

[3]  M. M. Arer,et al.  Atomic ordering characteristics of Ni3Al intermetallics with substitutional ternary additions , 1997 .

[4]  G. S. Painter,et al.  Point defects and the binding energies of boron near defect sites in Ni3Al: A first-principles investigation , 1997 .

[5]  M. Enomoto,et al.  Analysis of γ′/γ equilibrium in Ni−Al−X alloys by the , 1989, Metallurgical and Materials Transactions A.

[6]  D. Pope High Temperature Ordered Intermetallic Alloys , 1986 .

[7]  Marvin L. Cohen,et al.  Electronic structure of solids , 1984 .

[8]  Sluiter,et al.  Site preference of ternary additions in Ni3Al. , 1995, Physical review. B, Condensed matter.

[9]  D. Seidman,et al.  The Influence of Tungsten on the Chemical Composition of a Temporally Evolving Nanostructure of a Model Ni-Al-Cr Superalloy , 2004, Microscopy and Microanalysis.

[10]  Tomoo Suzuki,et al.  Alloying behaviour of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge , 1984 .

[11]  D. Seidman,et al.  Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni-Al-Cr superalloy , 2007, 0710.3610.

[12]  R. Reed The Superalloys: Fundamentals and Applications , 2006 .

[13]  R. Jayaram,et al.  APFIM characterization of single-crystal PWA 1480 nickel-base superalloy , 1994 .

[14]  Chong-yu Wang,et al.  Energetics and electronic structure of Re and Ta in the gamma ' phase of Ni-based superalloys , 2001 .

[15]  H. Harada,et al.  The Monte Carlo simulation of ordering kinetics in Ni-base superalloys , 1997 .

[16]  B. Gleeson,et al.  Site preference of ternary alloying elements in Ni3Al: A first-principles study , 2006 .

[17]  A. Chiba,et al.  Site occupation determination of Pd in Ni3Al by ALCHEMI , 1991 .

[18]  H. Skriver,et al.  CALCULATED SITE SUBSTITUTION IN TERNARY GAMMA '-NI3AL : TEMPERATURE AND COMPOSITION EFFECTS , 1997 .

[19]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[20]  R. Podloucky,et al.  Ab initio calculation of point defect energies and atom migration profiles in varying surroundings in L1 2 -ordered intermetallic compounds , 2004 .

[21]  D. Blavette,et al.  Phase composition and long range order in γ′ phase of a nickel base single crystal superalloy CMSX2: An atom probe study , 1984 .

[22]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[23]  B. Gleeson,et al.  Site preference of transition metal elements in Ni3Al , 2006 .

[24]  J. Tien,et al.  Modeling of ternary site occupation in L12 ordered intermetallics , 1989 .

[25]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[26]  H. Harada,et al.  Atom probe microanalysis of Ir-bearing Ni-based superalloys , 1998 .

[27]  R. Rawlings,et al.  The alloying behaviour and mechanical properties of polycrystalline Ni3Al (γ′ phase) with ternary additions , 1975 .

[28]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.