Strain in Granular Media: Probabilistic Approach to Dirichlet Tessellation

AbstractDeformations in granular media are described by using a representation of the microkinematics of the underlying assembly through Dirichlet tessellation. Based on a probabilistic analysis of topological rearrangements induced by evolving microstructures in the assembly, homogenization is carried out within a multiscale approach—from deforming individual cells to cell network level—to eventually describe global strain in the granular ensemble. In contrast to other models in the literature, tessellation network properties are directly linked to physical microstructural characteristics of the granular assembly through local coordination number and fabric anisotropy. Because these microstructural variables dictate both strain and stress in a granular medium, this provides a route to establish a stress-strain relationship as an ultimate goal. In this paper, detailed attention is paid to the description of evolving fabric anisotropy and coordination number as a combination of dissipative microstructural ...

[1]  N. P. Kruyt Micromechanical study of plasticity of granular materials , 2010 .

[2]  U. El Shamy,et al.  Microscale Energy Dissipation Mechanisms in Cyclically-Loaded Granular Soils , 2012, Geotechnical and Geological Engineering.

[3]  N. P. Kruyt,et al.  Micromechanical Definition of the Strain Tensor for Granular Materials , 1996 .

[4]  Pierre Bésuelle,et al.  Strain localization in geomaterials , 2007 .

[5]  S. Antony,et al.  Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Marie Chaze,et al.  Change of scale in granular materials , 2000 .

[7]  N. P. Kruyt Micromechanical Study of fabric evolution in quasi-static deformation of granular materials , 2012 .

[8]  M. J. Powell Computer-simulated random packing of spheres , 1980 .

[9]  Richard J. Bathurst,et al.  Observations on stress-force-fabric relationships in idealized granular materials , 1990 .

[10]  G. Saussine,et al.  Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles , 2008, 0805.0178.

[11]  M. Kuhn Deformation Measures for Granular Materials , 1997 .

[12]  Katalin Bagi,et al.  Stress and strain in granular assemblies , 1996 .

[13]  A. Tordesillas,et al.  Hyperstaticity and loops in frictional granular packings , 2009, 0906.1703.

[14]  M. Satake New formulation of graph-theoretical approach in the mechanics of granular materials , 1993 .

[15]  Ning Guo,et al.  A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media , 2014 .

[16]  Katalin Bagi,et al.  Analysis of microstructural strain tensors for granular assemblies , 2006 .

[17]  Takashi Matsushima,et al.  Micro structures of granular materials with various grain size distributions , 2012 .

[18]  F. Radjai,et al.  Fabric evolution and accessible geometrical states in granular materials , 2012 .

[19]  M. Satake Tensorial form definitions of discrete-mechanical quantities for granular assemblies , 2004 .

[20]  R. Wan,et al.  Fabric and connectivity as field descriptors for deformations in granular media , 2015 .

[21]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[22]  J. Goddard,et al.  From Granular Matter to Generalized Continuum , 2008 .

[23]  Doris Yacoub,et al.  Microstructure evolution in compacted granular beds , 2000 .