Kinematic dynamos in triaxial ellipsoids

Planetary magnetic fields are generated by motions of electrically conducting fluids in their interiors. The dynamo problem has thus received much attention in spherical geometries, even though planetary bodies are non-spherical. To go beyond the spherical assumption, we develop an algorithm that exploits a fully spectral description of the magnetic field in triaxial ellipsoids to solve the induction equation with local boundary conditions (i.e. pseudo-vacuum or perfectly conducting boundaries). We use the method to compute the free-decay magnetic modes and to solve the kinematic dynamo problem for prescribed flows. The new method is thoroughly compared with analytical solutions and standard finite-element computations, which are also used to model an insulating exterior. We obtain dynamo magnetic fields at low magnetic Reynolds numbers in ellipsoids, which could be used as simple benchmarks for future dynamo studies in such geometries. We finally discuss how the magnetic boundary conditions can modify the dynamo onset, showing that a perfectly conducting boundary can strongly weaken dynamo action, whereas pseudo-vacuum and insulating boundaries often give similar results.

[1]  S. Tobias,et al.  The turbulent dynamo , 2019, Journal of Fluid Mechanics.

[2]  K. Miljković,et al.  Was the moon magnetized by impact plasmas? , 2020, Science Advances.

[3]  J. Vidal,et al.  Acoustic and inertial modes in planetary-like rotating ellipsoids , 2020, Proceedings of the Royal Society A.

[4]  J. Vidal,et al.  Compressible fluid modes in rigid ellipsoids: towards modal acoustic velocimetry , 2020, Journal of Fluid Mechanics.

[5]  A. Jackson,et al.  Optimal kinematic dynamos in a sphere , 2020, Proceedings of the Royal Society A.

[6]  M. Le Bars,et al.  Experimental study of the nonlinear saturation of the elliptical instability: inertial wave turbulence versus geostrophic turbulence , 2019, Journal of Fluid Mechanics.

[7]  A. Jackson,et al.  A trio of simple optimized axisymmetric kinematic dynamos in a sphere , 2019, Proceedings of the Royal Society A.

[8]  J. Aubert Approaching Earth’s core conditions in high-resolution geodynamo simulations , 2019, Geophysical Journal International.

[9]  A. Fienga,et al.  Observational Constraint on the Radius and Oblateness of the Lunar Core‐Mantle Boundary , 2019, Geophysical Research Letters.

[10]  J. Vidal,et al.  Rotating double-diffusive convection in stably stratified planetary cores , 2019, Geophysical Journal International.

[11]  N. Schaeffer,et al.  Precessing spherical shells: flows, dissipation, dynamo and the lunar core , 2018, Geophysical Journal International.

[12]  S. Goto,et al.  Impact of a small ellipticity on the sustainability condition of developed turbulence in a precessing spheroid , 2018 .

[13]  M. Le Bars,et al.  Turbulent Kinematic Dynamos in Ellipsoids Driven by Mechanical Forcing , 2018, 1811.02029.

[14]  M. Rieutord,et al.  Axisymmetric inertial modes in a spherical shell at low Ekman numbers , 2018, Journal of Fluid Mechanics.

[15]  K. Li,et al.  The optimal kinematic dynamo driven by steady flows in a sphere , 2018, Journal of Fluid Mechanics.

[16]  J. Vidal,et al.  Magnetic fields driven by tidal mixing in radiative stars , 2017, 1711.09612.

[17]  J. Vidal,et al.  Inviscid instabilities in rotating ellipsoids on eccentric Kepler orbits , 2017, Journal of Fluid Mechanics.

[18]  D. Ivers Kinematic dynamos in spheroidal geometries , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  J. Aurnou,et al.  Libration‐driven flows in ellipsoidal shells , 2017 .

[20]  X. Liao,et al.  Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession , 2017 .

[21]  Alexandre Fournier,et al.  Turbulent geodynamo simulations: a leap towards Earth's core , 2017, 1701.01299.

[22]  A. Jackson,et al.  Precession-driven dynamos in a full sphere and the role of large scale cyclonic vortices , 2016, 1606.03230.

[23]  Louise H. Kellogg,et al.  Performance benchmarks for a next generation numerical dynamo model , 2016 .

[24]  A. Jackson,et al.  Applications of a finite-volume algorithm for incompressible MHD problems , 2016, 1601.01810.

[25]  M. Proctor Energy requirement for a working dynamo , 2015 .

[26]  N. Gillet,et al.  On magnetostrophic inertia-less waves in quasi-geostrophic models of planetary cores , 2015 .

[27]  J. Aurnou,et al.  Generation and maintenance of bulk turbulence by libration-driven elliptical instability , 2015 .

[28]  D. Cébron,et al.  Latitudinal libration driven flows in triaxial ellipsoids , 2015, Journal of Fluid Mechanics.

[29]  D. Cébron,et al.  Flows driven by libration, precession, and tides , 2015 .

[30]  S Vantieghem,et al.  Inertial modes in a rotating triaxial ellipsoid , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  D. Cébron,et al.  TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE , 2014, 1406.3431.

[32]  Jean-Luc Guermond,et al.  A spherical shell numerical dynamo benchmark with pseudo-vacuum magnetic boundary conditions , 2014 .

[33]  H. Harder,et al.  Finite volume simulations of dynamos in ellipsoidal planets , 2013 .

[34]  B. Favier,et al.  Growth rate degeneracies in kinematic dynamos. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Cheng-Chin Wu,et al.  On a dynamo driven topographically by longitudinal libration , 2013 .

[36]  J. Guermond,et al.  Remarks on the stability of the Navier–Stokes equations supplemented with stress boundary conditions , 2012, 1201.2837.

[37]  George Dassios,et al.  Ellipsoidal Harmonics: Theory and Applications , 2012 .

[38]  D. Cébron,et al.  Magnetohydrodynamic simulations of the elliptical instability in triaxial ellipsoids , 2012, 1309.1929.

[39]  P. Lesaffre,et al.  Stokes drift dynamos , 2011, Journal of Fluid Mechanics.

[40]  Andrew Jackson,et al.  An optimal Galerkin scheme to solve the kinematic dynamo eigenvalue problem in a full sphere , 2010, J. Comput. Phys..

[41]  Philip W. Livermore,et al.  Galerkin orthogonal polynomials , 2010, J. Comput. Phys..

[42]  Johannes Wicht,et al.  Theory and Modeling of Planetary Dynamos , 2010 .

[43]  Cheng-Chin Wu,et al.  On a dynamo driven by topographic precession , 2009 .

[44]  Jean-Luc Guermond,et al.  Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a Fourier/finite element technique and an interior penalty method , 2009, J. Comput. Phys..

[45]  R. Arlt,et al.  A solar mean field dynamo benchmark , 2008 .

[46]  S. Fauve,et al.  Effect of magnetic boundary conditions on the dynamo threshold of von Kármán swirling flows , 2008, 0804.1923.

[47]  A. Tilgner Dynamo action with wave motion. , 2008, Physical review letters.

[48]  A. Jackson,et al.  Transient magnetic energy growth in spherical stationary flows , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  V. Frayssé,et al.  Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi-Chebyshev algorithm , 2006, physics/0604219.

[50]  A. Jackson,et al.  A comparison of numerical schemes to solve the magnetic induction eigenvalue problem in a spherical geometry , 2005 .

[51]  Ulrich Hansen,et al.  A finite-volume solution method for thermal convection and dynamo problems in spherical shells , 2005 .

[52]  A. Tilgner Precession driven dynamos , 2005 .

[53]  Emmanuel Dormy,et al.  An integro-differential formulation for magnetic induction in bounded domains: boundary element-finite volume method , 2004 .

[54]  D. Jault,et al.  Numerical study of a rotating fluid in a spheroidal container , 2004 .

[55]  A. Jackson,et al.  On magnetic energy instability in spherical stationary flows , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[56]  G. Schubert,et al.  Nonaxisymmetric Instabilities of a Toroidal Magnetic Field in a Rotating Sphere , 2003 .

[57]  F. Cattaneo,et al.  Dynamo action driven by convection: the influence of magnetic boundary conditions , 2000 .

[58]  A. Tilgner On Models of Precession Driven Core Flow , 1998 .

[59]  A. Kageyama,et al.  Velocity and magnetic field structures in a magnetohydrodynamic dynamo , 1997 .

[60]  Catherine Constable,et al.  Foundations of geomagnetism , 1996 .

[61]  R. Kerswell Tidal excitation of hydromagnetic waves and their damping in the Earth , 1994, Journal of Fluid Mechanics.

[62]  Paul Bellan,et al.  Physical constraints on the coefficients of Fourier expansions in cylindrical coordinates , 1990 .

[63]  F. Marques On boundary conditions for velocity potentials in confined flows: Application to Couette flow , 1990 .

[64]  R. W. James,et al.  Time-dependent kinematic dynamos with stationary flows , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[65]  N. Lebovitz The stability equations for rotating, inviscid fluids: Galerkin methods and orthogonal bases , 1989 .

[66]  D. E. Smylie,et al.  Can Precession Power the Geomagnetic Dynamo , 1975 .

[67]  D. Loper Torque balance and energy budget for the precessionally driven dynamo , 1975 .

[68]  P. Roberts,et al.  A three-dimensional kinematic dynamo , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[69]  C. Pekeris,et al.  Kinematic dynamos and the Earth’s magnetic field , 1973, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[70]  L. L. Lynn,et al.  The method of weighted residuals and variational principles, Bruce A. Finlayson, Academic Press, New York (1972). 412 pages , 1973 .

[71]  H. K. Moffatt Dynamo action associated with random inertial waves in a rotating conducting fluid , 1970, Journal of Fluid Mechanics.

[72]  W. Malkus Hydromagnetic planetary waves , 1967, Journal of Fluid Mechanics.

[73]  Edward Crisp Bullard,et al.  Homogeneous dynamos and terrestrial magnetism , 1954, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.