Extensive molecular genetic survey of Taiwanese patients with amyotrophic lateral sclerosis

[1]  G. Sobue,et al.  [Japanese Consortium for Amyotrophic Lateral Sclerosis research (JaCALS)]. , 2014, Brain and nerve = Shinkei kenkyu no shinpo.

[2]  Robert H. Brown,et al.  ERBB4 mutations that disrupt the neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19. , 2013, American journal of human genetics.

[3]  D. Fan,et al.  ATXN2 CAG repeat expansions increase the risk for Chinese patients with amyotrophic lateral sclerosis , 2013, Neurobiology of Aging.

[4]  Robert H. Brown,et al.  Amyotrophic lateral sclerosis: Problems and prospects , 2013, Annals of neurology.

[5]  D. Morris,et al.  Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing , 2013, Journal of Medical Genetics.

[6]  Rui Huang,et al.  PFN1 mutations are rare in Han Chinese populations with amyotrophic lateral sclerosis , 2013, Neurobiology of Aging.

[7]  G. Rouleau,et al.  TARDBP and FUS Mutations Associated with Amyotrophic Lateral Sclerosis: Summary and Update , 2013, Human mutation.

[8]  Z. Zou,et al.  Mutations in the profilin 1 gene are not common in amyotrophic lateral sclerosis of Chinese origin , 2013, Neurobiology of Aging.

[9]  Z. Zou,et al.  Screening for C9orf72 repeat expansions in Chinese amyotrophic lateral sclerosis patients , 2013, Neurobiology of Aging.

[10]  Li-Ying Cui,et al.  Screening of VCP mutations in Chinese amyotrophic lateral sclerosis patients , 2013, Neurobiology of Aging.

[11]  A. Pestronk,et al.  An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study , 2013, The Lancet Neurology.

[12]  Michael Benatar,et al.  Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS , 2013, Nature.

[13]  S. Newhouse,et al.  Screening for OPTN mutations in a cohort of British amyotrophic lateral sclerosis patients , 2012, Neurobiology of Aging.

[14]  A. Chiò,et al.  Extensive genetics of ALS , 2012, Neurology.

[15]  N. Atsuta,et al.  Analysis of C9orf72 repeat expansion in 563 Japanese patients with amyotrophic lateral sclerosis , 2012, Neurobiology of Aging.

[16]  P. Tsai,et al.  A hexanucleotide repeat expansion in C9ORF72 causes familial and sporadic ALS in Taiwan , 2012, Neurobiology of Aging.

[17]  F. Marrosu,et al.  C9ORF72 hexanucleotide repeat expansions in the Italian sporadic ALS population , 2012, Neurobiology of Aging.

[18]  B. Castellotti,et al.  ATAXIN2 CAG-repeat length in Italian patients with amyotrophic lateral sclerosis: risk factor or variant phenotype? Implication for genetic testing and counseling , 2012, Neurobiology of Aging.

[19]  S. C. Chafe,et al.  Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis , 2012, Nature.

[20]  C. Ki,et al.  Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in Korean patients with familial and sporadic ALS , 2012, Neurobiology of Aging.

[21]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[22]  J. Hardy,et al.  Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. , 2012, Brain : a journal of neurology.

[23]  A. Al-Chalabi,et al.  Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study , 2012, The Lancet Neurology.

[24]  F. Marrosu,et al.  Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. , 2012, Brain : a journal of neurology.

[25]  S. Hazell,et al.  Optineurin mutations in Japanese amyotrophic lateral sclerosis , 2012 .

[26]  T. Mullen,et al.  SOD1, ANG, TARDBP and FUS mutations in amyotrophic lateral sclerosis: A United States clinical testing lab experience , 2012, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[27]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[28]  T. Ferman,et al.  Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72 , 2011, Acta Neuropathologica.

[29]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[30]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[31]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[32]  P. Pan,et al.  Ataxin-2 intermediate-length polyglutamine: a possible risk factor for Chinese patients with amyotrophic lateral sclerosis , 2011, Neurobiology of Aging.

[33]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[34]  G. Comi,et al.  Novel optineurin mutations in patients with familial and sporadic amyotrophic lateral sclerosis , 2011, Journal of Neurology, Neurosurgery & Psychiatry.

[35]  B. Dubois,et al.  Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2 , 2011, Neurology.

[36]  Yi-Chung Lee,et al.  FUS, TARDBP, and SOD1 mutations in a Taiwanese cohort with familial ALS , 2011, Neurobiology of Aging.

[37]  Patrizia Sola,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2011, Neuron.

[38]  Sonja W. Scholz,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2010, Neuron.

[39]  G. Sobue,et al.  [Japanese consortium for amyotrophic lateral sclerosis research (JaCALS)]. , 2010, Rinsho shinkeigaku = Clinical neurology.

[40]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[41]  V. Meininger,et al.  SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype–phenotype correlations , 2010, Journal of Medical Genetics.

[42]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[43]  C. Shaw,et al.  Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase , 2010, Proceedings of the National Academy of Sciences.

[44]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[45]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[46]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[47]  Robert H. Brown,et al.  Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. , 2009, American journal of human genetics.

[48]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[49]  S. Ennis,et al.  ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis , 2006, Nature Genetics.

[50]  T. Gillingwater,et al.  A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. , 2004, American journal of human genetics.

[51]  John W Griffin,et al.  DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). , 2004, American journal of human genetics.

[52]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[53]  H. Horvitz,et al.  Epidemiology of mutations in superoxide dismutase in amyotrophic lateal sclerosis , 1997, Annals of neurology.

[54]  D. C. Carter,et al.  Atomic structure and chemistry of human serum albumin , 1993, Nature.

[55]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[56]  B. Kalmar,et al.  The role of heat shock proteins in Amyotrophic Lateral Sclerosis: The therapeutic potential of Arimoclomol. , 2014, Pharmacology & therapeutics.

[57]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[58]  J. Zlotogora High frequencies of human genetic diseases: founder effect with genetic drift or selection? , 1994, American journal of medical genetics.