Reactive multiparticle collision dynamics

Abstract A mesoscopic dynamics method for the simulation of spatially distributed chemically reacting systems under equilibrium and nonequilibrium conditions is described. Non-reactive collisions are modeled by multiparticle collision dynamics that conserves mass, momentum and energy. Reactive collisions are described by birth–death stochastic processes. The dynamics is governed by a Markov chain in the full phase space of the system, which reduces to mass action rate laws in the mean field limit. Simulations on the Selkov model are carried out to illustrate the simulation method.

[1]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[2]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[3]  B. Hasslacher,et al.  Molecular Turing structures in the biochemistry of the cell. , 1993, Chaos.

[4]  S. Schnell,et al.  Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. , 2004, Progress in biophysics and molecular biology.

[5]  Raymond Kapral,et al.  Mesoscopic model for diffusion-influenced reaction dynamics. , 2004, The Journal of chemical physics.

[6]  G. Gompper,et al.  Mesoscopic solvent simulations: multiparticle-collision dynamics of three-dimensional flows. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  K. Rohlf Stochastic phase-space description for reactions that change particle numbers , 2009 .

[8]  Raymond Kapral,et al.  Mesoscopic multiparticle collision dynamics of reaction-diffusion fronts. , 2005, The journal of physical chemistry. B.

[9]  J. F. Ryder,et al.  Modeling microscopic swimmers at low Reynolds number. , 2007, The Journal of chemical physics.

[10]  Raymond Kapral,et al.  Diffusion and reaction in crowded environments , 2007 .

[11]  Jaap A. Kaandorp,et al.  Spatial stochastic modelling of the phosphoenolpyruvate-dependent phosphotransferase (PTS) pathway in Escherichia coli , 2006, Bioinform..

[12]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[13]  Anna T. Lawniczak,et al.  Lattice gas automata for reactive systems , 1995, comp-gas/9512001.

[14]  R. Winkler,et al.  Dynamics of polymers in a particle-based mesoscopic solvent. , 2005, The Journal of chemical physics.

[15]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[16]  E. Sel'kov,et al.  Self-oscillations in glycolysis. 1. A simple kinetic model. , 1968, European journal of biochemistry.

[17]  C. Lumsden,et al.  Stochastic Simulation of Coupled Reaction-Diffusion Processes , 1996 .

[18]  G. Gompper,et al.  Erratum: Mesoscopic solvent simulations: Multiparticle-collision dynamics of three-dimensional flows [Phys. Rev. E 66, 036702 (2002)] , 2003 .

[19]  R. Kapral Multiparticle Collision Dynamics: Simulation of Complex Systems on Mesoscales , 2008 .

[20]  J. F. Ryder,et al.  Kinetics of the polymer collapse transition: the role of hydrodynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  D. Bray,et al.  Stochastic simulation of chemical reactions with spatial resolution and single molecule detail , 2004, Physical biology.

[22]  A. Malevanets,et al.  Solute molecular dynamics in a mesoscale solvent , 2000 .

[23]  Peter H. Richter,et al.  Control and Dissipation in Oscillatory Chemical Engines , 1981 .

[24]  C. Rao,et al.  Control, exploitation and tolerance of intracellular noise , 2002, Nature.

[25]  T Ihle,et al.  Equilibrium calculation of transport coefficients for a fluid-particle model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Måns Ehrenberg,et al.  Mesoscopic reaction-diffusion in intracellular signaling , 2003, SPIE International Symposium on Fluctuations and Noise.

[27]  Raymond Kapral,et al.  Chemically powered nanodimers. , 2007, Physical review letters.

[28]  Anna T. Lawniczak,et al.  Reactive dynamics in a multispecies lattice‐gas automaton , 1992 .

[29]  J. Padding,et al.  Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Dennis Bray,et al.  Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis , 2000, Nature Cell Biology.

[31]  C M Pooley,et al.  Kinetic theory derivation of the transport coefficients of stochastic rotation dynamics. , 2005, The journal of physical chemistry. B.

[32]  P. R. ten Wolde,et al.  Green's-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space. , 2005, The Journal of chemical physics.