Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex

Recognition that posterior basal and medial parts of the prefrontal cortex belong to the cortical component of the limbic system was important in understanding their anatomic and functional organization. In primates, the limbic system has evolved along with the neocortex and maintains strong connections with association areas. Consequently, damage to limbic structures in primates results in a series of deficits in cognitive, mnemonic and emotional processes. Limbic cortices differ in their structure and connections from the eulaminate areas. Limbic cortices issue widespread projections from their deep layers and reach eulaminate areas by terminating in layer I. By comparison, the eulaminate areas receive projections from a more restricted set of cortices and when they communicate with limbic cortices they issue projections from their upper layers and terminate in a columnar pattern. Several of the connectional and neurochemical characteristics of limbic cortices are observed as a transient feature in all areas during development. Anatomic evidence suggests that limbic areas retain some features observed in ontogeny, which may explain their great plasticity and involvement in learning and memory, but also their preferential vulnerability in several psychiatric and neurologic disorders.

[1]  J. Fawcett,et al.  Regressive events in neurogenesis. , 1984, Science.

[2]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. II. Visual responses related to fixation of gaze. , 1983, Journal of neurophysiology.

[3]  J. E. Albano,et al.  Visual-motor function of the primate superior colliculus. , 1980, Annual review of neuroscience.

[4]  G. E. Alexander,et al.  Effects of cooling prefrontal cortex on cell firing in the nucleus medialis dorsalis. , 1973, Brain research.

[5]  A. Abbie Cortical lamination in a polyprotodont marsupial, Perameles nasuta , 1942 .

[6]  W. E. Le Gros Clark,et al.  THE STRUCTURE AND CONNECTIONS OF THE THALAMUS , 1932 .

[7]  J. Fuster Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. , 1973, Journal of neurophysiology.

[8]  P. Greengard,et al.  Role of protein phosphorylation in neuronal signal transduction 1 , 1989, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[9]  T. Hattori,et al.  The development of laterality in the forebrain projections of midline thalamic cell groups in the rat. , 1987, Brain Research.

[10]  P. Goldman-Rakic,et al.  Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: Anatomical evidence for somatic representation in primate frontal association cortex , 1989, The Journal of comparative neurology.

[11]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[12]  J Schlag,et al.  Visuomotor functions of central thalamus in monkey. I. Unit activity related to spontaneous eye movements. , 1984, Journal of neurophysiology.

[13]  Solomon H. Snyder,et al.  Nitric oxide, a novel neuronal messenger , 1992, Neuron.

[14]  P. Goldman-Rakic,et al.  Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys , 1981, The Journal of comparative neurology.

[15]  P. Yakovlev MOTILITY, BEHAVIOR AND THE BRAIN*: STEREODYNAMIC ORGANIZATION AND NEURAL CO‐ORDINATES OF BEHAVIOR , 1948, The Journal of nervous and mental disease.

[16]  P S Goldman-Rakic,et al.  DARPP‐32, a phosphoprotein enriched in dopaminoceptive neurons bearing dopamine D1 receptors: DIstribution in the cerebral cortex of the newborn and adult rhesus monkey , 1990, The Journal of comparative neurology.

[17]  H. Barbas,et al.  Diverse thalamic projections to the prefrontal cortex in the rhesus monkey , 1991, The Journal of comparative neurology.

[18]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Richard Passingham,et al.  Delayed matching after selective prefrontal lesions in monkeys (Macaca mulatta) , 1975, Brain Research.

[20]  H. Jasper,et al.  Book Reviews: Epilepsy and the Functional Anatomy of the Human Brain , 1954 .

[21]  K. Kultas‐Ilinsky,et al.  Sagittal cytoarchitectonic maps of the Macaca mulatta thalamus with a revised nomenclature of the motor‐related nuclei validated by observations on their connectivity , 1987, The Journal of comparative neurology.

[22]  S. Sharma,et al.  Bilateral projections of neurons in the lateral geniculate nucleus and nucleus lateralis posterior to the visual cortex in the neonatal rat , 1986, Neuroscience Letters.

[23]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[24]  A. Routtenberg Protein Kinase C and Substrate Protein F1 (47 kD, 4.5 pI): Relation to Synaptic Plasticity and Growth , 1985 .

[25]  G. Innocenti,et al.  Interchange of callosal and association projections in the developing visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  M. Wong-Riley Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys , 1979, Brain Research.

[27]  R. Hunter,et al.  The fine structure of the placental labyrinth in the sloth, Bradypus tridactylus , 1982, The Anatomical record.

[28]  G. Rizzolatti,et al.  Afferent and efferent projections of the inferior area 6 in the macaque monkey , 1986, The Journal of comparative neurology.

[29]  K. Kultas‐Ilinsky,et al.  Fine structure of the magnocellular subdivision of the ventral anterior thalamic nucleus (V Amc) of Macaca mulatta: II. Organization of nigrothalamic afferents as revealed with EM autoradiography , 1990, The Journal of comparative neurology.

[30]  H. Barbas,et al.  Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey , 1990, The Journal of comparative neurology.

[31]  L. Heimer,et al.  Synaptic distribution of centripetal and centrifugal nerve fibres in the olfactory system of the rat. An experimental anatomical study. , 1968, Journal of anatomy.

[32]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[33]  G. V. Hoesen,et al.  Temporal neocortical afferent connections to the amygdala in the rhesus monkey , 1976, Brain Research.

[34]  M. Mesulam,et al.  Cortical afferent input to the principals region of the rhesus monkey , 1985, Neuroscience.

[35]  P. Goldman-Rakic,et al.  Interhemispheric integration: II. Symmetry and convergence of the corticostriatal projections of the left and the right principal sulcus (PS) and the left and the right supplementary motor area (SMA) of the rhesus monkey. , 1991, Cerebral cortex.

[36]  D. Pandya,et al.  Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey , 1987, The Journal of comparative neurology.

[37]  Jordan Grafman,et al.  Handbook of Neuropsychology , 1991 .

[38]  A. Scheibel,et al.  Structural organization of nonspecific thalamic nuclei and their projection toward cortex. , 1967, Brain research.

[39]  J. A. Horel,et al.  Visual learning suppressed by cooling the temporal pole. , 1984, Behavioral neuroscience.

[40]  A. Routtenberg,et al.  A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism, and synaptic plasticity , 1987, Trends in Neurosciences.

[41]  W. Nauta,et al.  Projections of the lentiform nucleus in the monkey. , 1966, Brain research.

[42]  E. Halgren,et al.  Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. , 1978, Brain : a journal of neurology.

[43]  M. Voytko Cooling orbital frontal cortex disrupts matching-to-sample and visual discrimination learning in monkeys , 1985 .

[44]  E. Kandel,et al.  Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. , 1993, Science.

[45]  M. Mishkin Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus , 1978, Nature.

[46]  K. Nakayama,et al.  Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms: A case study , 1990, Visual Neuroscience.

[47]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[48]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[49]  P. Gloor,et al.  The role of the limbic system in experiential phenomena of temporal lobe epilepsy , 1982, Annals of neurology.

[50]  H. Kennedy,et al.  A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  R A Dart,et al.  The Dual Structure of the Neopallium: its History and Significance. , 1934, Journal of anatomy.

[52]  Deepak N. Pandya,et al.  Further observations on corticofrontal connections in the rhesus monkey , 1976, Brain Research.

[53]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[54]  S. McKee,et al.  The detection of motion in the peripheral visual field , 1984, Vision Research.

[55]  R. Desimone,et al.  Visual areas in the temporal cortex of the macaque , 1979, Brain Research.

[56]  A. R. Damasio,et al.  Pathological alterations in the amygdala in Alzheimer's disease , 1990, Neuroscience.

[57]  J. Fuster,et al.  Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. , 1981, Science.

[58]  W. Nauta The problem of the frontal lobe: a reinterpretation. , 1971, Journal of psychiatric research.

[59]  D. Pandya,et al.  Cortico-cortical connections in the rhesus monkey. , 1969, Brain research.

[60]  P. Greengard,et al.  Chapter 13 DARPP-32, a dopamine-regulated phosphoprotein , 1986 .

[61]  H. Barbas,et al.  Architecture and cortical connections of the prefrontal cortex in the rhesus monkey. , 1992, Advances in neurology.

[62]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[63]  T. Crow,et al.  Peptides, the limbic lobe and schizophrenia , 1983, Brain Research.

[64]  L. Benevento,et al.  The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta) , 1975, The Journal of comparative neurology.

[65]  L R Squire,et al.  Amnesia in monkeys after lesions of the mediodorsal nucleus of the thalamus , 1985, Annals of neurology.

[66]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[67]  John C. Eccles Evolution of the Brain , 1969 .

[68]  J. W. Papez A PROPOSED MECHANISM OF EMOTION , 1937 .

[69]  John Q. Trojanowski,et al.  Amygdaloid projections to prefrontal granular cortex in rhesus monkey demonstrated with horseradish peroxidase , 1975, Brain Research.

[70]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[71]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. , 1983, Journal of neurophysiology.

[72]  P. Goldman-Rakic,et al.  Organization of the nigrothalamocortical system in the rhesus monkey , 1985, The Journal of comparative neurology.

[73]  J. Fuster,et al.  Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks , 1982, Experimental Neurology.

[74]  G. Bourne The structure and function of nervous tissue , 1968 .

[75]  F. Sanides 7 – Representation in the Cerebral Cortex and Its Areal Lamination Patterns , 1972 .

[76]  R. Livingston,et al.  Some respiratory, vascular and thermal responses to stimulation of orbital surface of frontal lobe. , 1948, Journal of neurophysiology.

[77]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[78]  M. Mesulam Principles of behavioral neurology , 1985 .

[79]  A. Jennekens‐Schinkel Vision, memory and the temporal lobe By Eiichi Iwai and Mortimer Mishkin (eds.), Elsevier, New York, Amsterdam, London, 1990, 453 pages, US$95.00, ISBN 0-444-01531-0 , 1991, Journal of the Neurological Sciences.

[80]  P. Goldman-Rakic,et al.  Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys , 1982, Brain Research.

[81]  B. C. Motter,et al.  The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  S. Zola-Morgan,et al.  Retention deficits after combined amygdalo-hippocampal and selective hippocampal resections in the monkey , 1981, Neuropsychologia.

[83]  H. Barbas,et al.  Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey , 1993, Neuroscience.

[84]  G. Bonin,et al.  The neocortex of Macaca mulatta , 1947 .

[85]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[86]  L. Squire,et al.  Damage to the perirhinal cortex exacerbates memory impairment following lesions to the hippocampal formation , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  P S Goldman-Rakic,et al.  Crossed corticothalamic and thalamocortical connections of macaque prefrontal cortex , 1987, The Journal of comparative neurology.

[88]  M. Voytko Visual learning and retention examined with reversible cold lesions of the anterior temporal lobe , 1986, Behavioural Brain Research.

[89]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[90]  D. Minciacchi,et al.  Development of the thalamocortical system: Transient‐crossed projections to the frontal cortex in neonatal rats , 1989, The Journal of comparative neurology.

[91]  M. Schlag-Rey,et al.  Visuomotor functions of central thalamus in monkey. II. Unit activity related to visual events, targeting, and fixation. , 1984, Journal of neurophysiology.

[92]  R. Andersen,et al.  Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: A study using retrogradely transported fluorescent dyes , 1985, The Journal of comparative neurology.

[93]  G. V. Van Hoesen,et al.  Hippocampal formation: anatomy and the patterns of pathology in Alzheimer's disease. , 1990, Progress in brain research.

[94]  D. Amaral,et al.  The entorhinal cortex of the monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[95]  L. Squire,et al.  Neuroanatomy of memory. , 1993, Annual review of neuroscience.

[96]  J. A. Horel,et al.  Reversible cold lesions of the parahippocampal gyrus in monkeys result in deficits on the delayed match-to-sample and other visual tasks , 1989, Behavioural Brain Research.

[97]  C. Geula,et al.  Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey , 1992, The Journal of comparative neurology.

[98]  L. Squire,et al.  Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to human amnesia. , 1985, Behavioral neuroscience.

[99]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  J. Bullier,et al.  Anatomical segregation of two cortical visual pathways in the macaque monkey , 1990, Visual Neuroscience.

[101]  H. Barbas,et al.  Contralateral thalamic projections predominantly reach transitional cortices in the rhesus monkey , 1994, The Journal of comparative neurology.

[102]  Joaquin M. Fuster,et al.  Effects of cooling inferotemporal cortex on performance of visual memory tasks , 1981, Experimental Neurology.

[103]  H. Barbas,et al.  Organization of afferent input to subdivisions of area 8 in the rhesus monkey , 1981, The Journal of comparative neurology.

[104]  F. Sanides,et al.  Cytoarchitectonic subdivisions of sensorimotor and prefrontal regions and of bordering insular and limbic fields in slow loris (Nycticebus coucang coucang). , 1967, Journal fur Hirnforschung.

[105]  P. Broca,et al.  Anatomie comparée des circonvolutions cérébrales : le grand lobe limbique et la scissure limbique dans la série des mammifères , 1878 .

[106]  H. Killackey,et al.  Process elimination underlies ontogenetic change in the distribution of callosal projection neurons in the postcentral gyrus of the fetal rhesus monkey. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[107]  B. Vogt The Role of Layer I in Cortical Function , 1991 .

[108]  W. Nauta,et al.  A note on the problem of olfactory associations of the orbitofrontal cortex in the monkey , 1979, Neuroscience.

[109]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[110]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[111]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[112]  John Q. Trojanowski,et al.  Prefrontal granular cortex of the rhesus monkey. I. Intrahemispheric cortical afferents , 1977, Brain Research.

[113]  W. Cowan,et al.  Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons. , 1981, Brain research.

[114]  J. A. Horel,et al.  The performance of visual tasks while segments of the inferotemporal cortex are suppressed by cold , 1987, Behavioural Brain Research.

[115]  D. B. Bender,et al.  Visual Receptive Fields of Neurons in Inferotemporal Cortex of the Monkey , 1969, Science.

[116]  G. V. Hoesen,et al.  The parahippocampal gyrus: New observations regarding its cortical connections in the monkey , 1982, Trends in Neurosciences.

[117]  J M Fuster,et al.  Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior. , 1973, Brain research.

[118]  P. Goldman-Rakic Topography of cognition: parallel distributed networks in primate association cortex. , 1988, Annual review of neuroscience.

[119]  Mortimer Mishkin,et al.  Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys , 1986, Behavioural Brain Research.

[120]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[121]  H. Barbas Pattern in the cortical distribution of prefrontally directed neurons with divergent axons in the rhesus monkey. , 1995, Cerebral cortex.

[122]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[123]  J. Tigges,et al.  Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri) , 1981, The Journal of comparative neurology.

[124]  M. Mishkin,et al.  Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[125]  Daniel R. Weinberger,et al.  Schizophrenia and the frontal lobe , 1988, Trends in Neurosciences.

[126]  M Mishkin,et al.  Organization of the amygdalopetal projections from modality‐specific cortical association areas in the monkey , 1980, The Journal of comparative neurology.

[127]  J. Price,et al.  Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat , 1977, The Journal of comparative neurology.

[128]  J. Price An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex , 1973, The Journal of comparative neurology.

[129]  Lowell E. White Olfactory bulb projections of the rat , 1965 .

[130]  J. Fuster,et al.  Functional interactions between inferotemporal and prefrontal cortex in a cognitive task , 1985, Brain Research.

[131]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[132]  M. Yukie,et al.  Amygdalofugal and amygdalopetal connections with modality‐specific visual cortical areas in macaques (macaca fuscata, M. mulatta, and M. fascicularis) , 1987, The Journal of comparative neurology.

[133]  G. V. Van Hoesen,et al.  Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. , 1984, Science.

[134]  G. Reynolds,et al.  Beyond the Dopamine Hypothesis , 1989, British Journal of Psychiatry.

[135]  P. Greengard,et al.  Comparison of the immunocytochemical localization of DARPP‐32 and I‐1 in the amygdala and hippocampus of the rhesus monkey , 1993, The Journal of comparative neurology.

[136]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[137]  H. Barbas Pattern in the laminar origin of corticocortical connections , 1986, The Journal of comparative neurology.

[138]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[139]  Feinberg Jf The Wernicke-Korsakoff syndrome. , 1980 .

[140]  M. Imbert,et al.  Polysensory and cortico-cortical projections to frontal lobe of squirrel and rhesus monkeys. , 1969, Electroencephalography and clinical neurophysiology.