Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions

A simplified framework is presented for assessing the qualitative sensitivities of computed microwave properties, satellite brightness temperatures, and radar reflectivities to assumptions concerning the physical properties of ice-phase hydrometeors. Properties considered included the shape parameterm of a gamma size distribution and the melted-equivalent mass median diameter D0, the particle density, the dielectric mixing formula, and the choice of complex index of refraction for ice. These properties are examined for selected radiometer frequencies of 18.7, 36.5, 89.0, and 150.0 GHz and radar frequencies at 2.8, 13.4, 35.6, and 94.0 GHz—consistent with existing and planned remote sensing instruments. Passive and active microwave observables of ice particles are found to be extremely sensitive to the D0 of the size distribution. Similar large sensitivities are found for variations in the ice volumefractionwheneverthe geometric massmediandiameter exceeds approximately 1 /8th of the wavelength. At 94 GHz the two-way path-integrated attenuation is potentially large for dense/compact particles. The distribution parameter m has a comparatively weak effect on any observable: less than 1‐2 K in brightness temperature and a maximum of 2.7 dB (S band only) in the effective radar reflectivity. Reversal of the roles of ice and air in the Maxwell Garnett dielectric mixing formula leads to a substantial change in both microwave brightness temperature (;10 K) and radar reflectivity (approximately 2 dB across all frequencies).The choice of the complex indexof refraction of ice can produce a 3%‐4% change in the brightness temperature depression.

[1]  Fuzhong Weng,et al.  Retrieval of Ice Cloud Parameters Using the Advanced Microwave Sounding Unit , 2002 .

[2]  Ralf Bennartz,et al.  Utilizing Spaceborne Radars to Retrieve Dry Snowfall , 2009 .

[3]  Guosheng Liu,et al.  The response of 36- and 89-GHz microwave channels to convective snow clouds over ocean : Observation and modeling , 2000 .

[4]  C. Ulbrich Natural Variations in the Analytical Form of the Raindrop Size Distribution , 1983 .

[5]  David L. Mitchell,et al.  Mass-Dimensional Relationships for Ice Particles and the Influence of Riming on Snowfall Rates , 1990 .

[6]  P. Barber Absorption and scattering of light by small particles , 1984 .

[7]  G. Petty,et al.  Intercomparison of Bulk Microphysics Schemes in Model Simulations of Polar Lows , 2010 .

[8]  Christopher W. O'Dell,et al.  Scattering of Ice Particles at Microwave Frequencies: A Physically Based Parameterization , 2007 .

[9]  Fuzhong Weng,et al.  Uncertainties in Microwave Properties of Frozen Precipitation: Implications for Remote Sensing and Data Assimilation , 2010 .

[10]  Hiroshi Ishimoto,et al.  Radar Backscattering Computations for Fractal-Shaped Snowflakes , 2008 .

[11]  David H. Staelin,et al.  Comparison of AMSU Millimeter-Wave Satellite Observations, MM5/TBSCAT Predicted Radiances, and Electromagnetic Models for Hydrometeors , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Gang Hong Radar backscattering properties of nonspherical ice crystals at 94 GHz , 2007 .

[13]  T. L’Ecuyer,et al.  Identifying multiple-scattering-affected profiles in CloudSat observations over the oceans , 2008 .

[14]  Sergey Y. Matrosov,et al.  Dual‐frequency radar ratio of nonspherical atmospheric hydrometeors , 2005 .

[15]  Christian Kummerow,et al.  A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors , 1996, IEEE Trans. Geosci. Remote. Sens..

[16]  Wei Huang,et al.  The Modified Gamma Size Distribution Applied to Inhomogeneous and Nonspherical Particles: Key Relationships and Conversions , 2011 .

[17]  G. Tripoli A Nonhydrostatic Mesoscale Model Designed to Simulate Scale Interaction , 1992 .

[18]  Peter V. Hobbs,et al.  Fall speeds and masses of solid precipitation particles , 1974 .

[19]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[20]  Christian D. Kummerow,et al.  On the accuracy of the Eddington approximation for radiative transfer in the microwave frequencies , 1993 .

[21]  William S. Olson,et al.  A physical model to estimate snowfall over land using AMSU‐B observations , 2008 .

[22]  G. Mie,et al.  Sättigungsstrom und Stromkurve einer schlecht leitenden Flüssigkeit , 1908 .

[23]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[24]  Kazumasa Aonashi,et al.  Development of a snowfall retrieval algorithm at high microwave frequencies , 2006 .

[25]  A. Waldvogel,et al.  Size distribution of hydrometeors through the melting layer , 1998 .

[26]  Validation and Development of Melting Layer Models Using Constraints by Active/Passive Microwave Observations of Rain and the Wind-Roughened Ocean Surface , 2007 .

[27]  A. Lakhtakia,et al.  Beltrami fields within continuous source regions, volume integral equations, scattering algorithms and the extended Maxwell-Garnett model , 1993 .

[28]  Paolo Sano,et al.  Microwave single-scattering properties of randomly oriented soft-ice hydrometeors , 2008 .

[29]  Eric A. Smith,et al.  Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. I: Brightness-temperature properties of a time-dependent cloud-radiation model , 1992 .

[30]  F. Marzano,et al.  Use of cloud model microphysics for passive microwave-based precipitation retrieval : Significance of consistency between model and measurement manifolds , 1998 .

[31]  Guifu Zhang,et al.  Drop Size Distribution Retrieval with Polarimetric Radar: Model and Application , 2004 .

[32]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[33]  Grant W. Petty,et al.  A First Course in Atmospheric Radiation , 2004 .

[34]  Wei Huang,et al.  Microwave Backscatter and Extinction by Soft Ice Spheres and Complex Snow Aggregates , 2010 .

[35]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave: A revised compilation , 2008 .

[36]  A. Heymsfield Properties of tropical and midlatitude ice cloud particle ensembles. Part II: Applications for mesoscale and climate models , 2003 .

[37]  R. C. Savage,et al.  The Radiative Properties of Hydrometeors at Microwave Frequencies. , 1978 .

[38]  G. Petty Physical and Microwave Radiative Properties of Precipitating Clouds. Part I: Principal Component Analysis of Observed Multichannel Microwave Radiances in Tropical Stratiform Rainfall , 2001 .

[39]  Fuzhong Weng,et al.  A Microwave Polarimetric Two-Stream Radiative Transfer Model , 2002 .

[40]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[41]  C. Magono,et al.  Aerodynamic Studies of Falling Snowflakes , 1965 .

[42]  Carlton W. Ulbrich,et al.  Rainfall Microphysics and Radar Properties: Analysis Methods for Drop Size Spectra , 1998 .

[43]  J. Kong,et al.  Effective permittivity of dielectric mixtures , 1988 .

[44]  Andrew J. Heymsfield,et al.  Radar Scattering from Ice Aggregates Using the Horizontally Aligned Oblate Spheroid Approximation , 2012 .

[45]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[46]  I. Zawadzki,et al.  Snow Studies. Part II: Average Relationship between Mass of Snowflakes and Their Terminal Fall Velocity , 2010 .

[47]  T. Mackay,et al.  Linear and Nonlinear Homogenized Composite Mediums as Metamaterials , 2005 .

[48]  Robert Meneghini,et al.  Effective Dielectric Constants of Mixed-Phase Hydrometeors , 2000 .

[49]  M. Quante,et al.  Use of equivalent spheres to model the relation between radar reflectivity and optical extinction of ice cloud particles. , 2004, Applied optics.

[50]  Gregory J. Tripoli,et al.  The Spectral Ice Habit Prediction System (SHIPS). Part I: Model Description and Simulation of the Vapor Deposition Process , 2007 .

[51]  S. Matrosov,et al.  Improved Radar Ice Water Content Retrieval Algorithms Using Coincident Microphysical and Radar Measurements , 2005 .

[52]  Sergey Y. Matrosov,et al.  A Dual-Wavelength Radar Method to Measure Snowfall Rate , 1998 .

[53]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[54]  Gang Hong,et al.  Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequencies , 2007 .

[55]  William S. Olson,et al.  Application of TRMM PR and TMI Measurements to Assess Cloud Microphysical Schemes in the MM5 for a Winter Storm , 2010 .

[56]  Cerese M. Albers,et al.  Nonspherical and spherical characterization of ice in Hurricane Erin for wideband passive microwave comparisons , 2008 .

[57]  Guosheng Liu,et al.  A database of microwave single-scattering properties for nonspherical ice particles , 2008 .

[58]  Fuzhong Weng,et al.  Retrieval of Ice Cloud Parameters Using a Microwave Imaging Radiometer , 2000 .

[59]  J. Lenoble Radiative transfer in scattering and absorbing atmospheres: Standard computational procedures , 1985 .

[60]  Sergey Y. Matrosov,et al.  Effects of Multiple Scattering on Attenuation-Based Retrievals of Stratiform Rainfall from CloudSat , 2008 .