On the relationship between the Cottrell―Stokes law and the Haasen plot

[1]  R. C. Picu,et al.  Strain rate sensitivity of thermally activated dislocation motion across fields of obstacles of different kind , 2009 .

[2]  Zhijie Xu,et al.  Thermally activated motion of dislocations in fields of obstacles : The effect of obstacle distribution , 2007, 1807.09893.

[3]  W. Skrotzki,et al.  Scaling effects in the plasticity of nickel , 2006 .

[4]  S. Saimoto,et al.  A re-examination of the cottrell-stokes relation based on precision measurements of the activation volume , 1983 .

[5]  C. S. Hartley,et al.  Constitutive Equations in Plasticity , 1977 .

[6]  G. Schoeck,et al.  Cottrell‐stokes law in Cadmium and Zinc , 1977 .

[7]  Z. S. Basinski Forest hardening in face centred cubic metals , 1974 .

[8]  F. Bullen,et al.  The Temperature Dependence of the Flow Stress of Copper Single Crystals , 1968, June 1.

[9]  E. Bradley,et al.  Nonresonant absorption and dispersion of C2CIF5-helium compressed gas mixtures , 1967 .

[10]  M. Makin,et al.  DISLOCATION MOVEMENT THROUGH RANDOM ARRAYS OF OBSTACLES , 1966 .

[11]  D. Kuhlmann-wilsdorf,et al.  THE EFFECT OF PRESTRESSING ON THE STRENGTH OF NEUTRON‐IRRADIATED COPPER SINGLE CRYSTALS , 1964 .

[12]  Z. S. Basinski Thermally activated glide in face-centred cubic metals and its application to the theory of strain hardening , 1959 .

[13]  P. Haasen Plastic deformation of nickel single crystals at low temperatures , 1958 .

[14]  A. Cottrell,et al.  Effects of temperature on the plastic properties of aluminium crystals , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  A. Cottrell,et al.  CXXXI. Effect of temperature on the flow stress of work-hardened copper crystals , 1955 .