EVALUATING AND MINIMIZING WATER USE BY GREENHOUSE EVAPORATIVE COOLING SYSTEMS IN A SEMI-ARID CLIMATE

.................................................................................................................... 28

[1]  R. Cook,et al.  Greenhouse Tomatoes Change the Dynamics of the North American Fresh Tomato Industry , 2012 .

[2]  Chieri Kubota,et al.  Water use for pad and fan evaporative cooling of a greenhouse in a semi-arid climate , 2006 .

[3]  Chieri Kubota,et al.  Effect of natural ventilation rate on relative humidity and water use for fog cooling in a semiarid greenhouse , 2006 .

[4]  Gulshan Mahajan,et al.  Response of Greenhouse tomato to irrigation and fertigation , 2006 .

[5]  B. Hanson,et al.  Drip Irrigation of Tomato and Cotton Under Shallow Saline Ground Water Conditions , 2006 .

[6]  Blaine R. Hanson,et al.  Crop evapotranspiration of processing tomato in the San Joaquin Valley of California, USA , 2006, Irrigation Science.

[7]  Alberto Pardossi,et al.  The influence of drip irrigation or subirrigation on tomato grown in closed-loop substrate culture with saline water , 2006 .

[8]  Jesús Cuartero,et al.  Plant water uptake and water use efficiency of greenhouse tomato cultivars irrigated with saline water , 2005 .

[9]  Handarto,et al.  Air and Leaf Temperatures and Relative Humidity in a Naturally Ventilated Single-Span Greenhouse with a Fogging System for Cooling and Its Evaporative Cooling Efficiency , 2005 .

[10]  Murat Kacira,et al.  Optimization of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind-induced ventilation , 2004 .

[11]  A. I. Özgüven,et al.  Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation , 2004 .

[12]  B. Hanson,et al.  Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability , 2004 .

[13]  U. Shani,et al.  Water use and yield of tomatoes under limited water and excess boron , 2003, Plant and Soil.

[14]  M. K. Ghosal,et al.  Modeling and experimental validation of a greenhouse with evaporative cooling by moving water film over external shade cloth , 2003 .

[15]  T. Bartzanas,et al.  Temperature Gradients in a Partially Shaded Large Greenhouse equipped with Evaporative Cooling Pads , 2003 .

[16]  P. Nagler,et al.  Comparison of transpiration rates among saltcedar, cottonwood and willow trees by sap flow and canopy temperature methods , 2003 .

[17]  D. Willits Cooling Fan-ventilated Greenhouses: a Modelling Study , 2003 .

[18]  B. J. Bailey,et al.  A review of greenhouse engineering developments during the 1990s , 2002 .

[19]  R. C. Hansen,et al.  A COMPARISON OF FOUR EVAPOTRANSPIRATION MODELS IN A GREENHOUSE ENVIRONMENT , 2002 .

[20]  I. Seginer THE ROLE OF TRANSPIRATIONAL COOLING IN THE DESIGN OF GREENHOUSE VENTILATION , 2002 .

[21]  C. Liao,et al.  Wind tunnel modeling the system performance of alternative evaporative cooling pads in Taiwan region , 2002 .

[22]  Thierry Boulard,et al.  Tomato leaf boundary layer climate: implications for microbiological whitefly control in greenhouses , 2002 .

[23]  N. Katsoulas,et al.  Influence of greenhouse ventilation regime on the microclimate and energy partitioning of a rose canopy during summer conditions , 2001 .

[24]  D. Willits The effect of cloth characteristics on the cooling performance of external shade cloths for greenhouses , 2001 .

[25]  M. Kacira,et al.  Establishing crop water stress index (CWSI) threshold values for early, non-contact detection of plant water stress , 2000 .

[26]  T. Bartzanas,et al.  GREENHOUSE EVAPORATIVE COOLING: MEASUREMENT AND DATA ANALYSIS , 2000 .

[27]  A. A. Jongebreur,et al.  Strategic Themes in Agricultural and Bioresource Engineering in the 21st Century , 2000 .

[28]  T. Boulard,et al.  Greenhouse crop transpiration simulation from external climate conditions , 2000 .

[29]  A. Arbel,et al.  Performance of a Fog System for Cooling Greenhouses , 1999 .

[30]  H. Ahmed,et al.  A SIMILITUDE MODEL FOR TESTING GREENHOUSE EVAPORATIVE COOLING PADS UNDER THE HOT-ARID CONDITIONS OF THE U.A.E. , 1998 .

[31]  N. Brisson,et al.  Seasonal estimation of evaporation and stomatal conductance over a soybean field using surface IR temperatures , 1995 .

[32]  K. Al-Jamal Greenhouse cooling in hot countries , 1994 .

[33]  A. Baille,et al.  Microclimate and transpiration of greenhouse rose crops , 1994 .

[34]  G. Papadakis,et al.  Experimental investigation and modelling of heat and mass transfer between a tomato crop and the greenhouse environment , 1994 .

[35]  J. Ben-Asher,et al.  Canopy temperature to assess daily evapotranspiration and management of high frequency drip irrigation systems , 1992 .

[36]  L. Urban,et al.  Effect of high-pressure mist on leaf water potential, leaf diffusive conductance, CO2 fixation and production of cultivar ‘Sonia’ rose plants grown on rockwool , 1992 .

[37]  B. J. Bailey,et al.  The effect of climate on tomato transpiration in greenhouses : measurements and models comparison , 1992 .

[38]  Josep Peñuelas,et al.  Remotely measured canopy temperature of greenhouse strawberries as indicator of water status and yield under mild and very mild water stress conditions , 1992 .

[39]  J. C. Bakker Leaf conductance of four glasshouse vegetable crops as affected by air humidity , 1991 .

[40]  S. Idso,et al.  Non-water-stressed baselines: the importance of site selection for air temperature and air vapour pressure deficit measurements , 1990 .

[41]  Yoshio Inoue,et al.  Remote estimation of leaf transpiration rate and stomatal resistance based on infrared thermometry , 1990 .

[42]  D. S. Kamat,et al.  Relations between remotely sensed canopy temperature, crop water stress, air vapour pressure deficit and evapotranspiration in chickpea , 1986 .

[43]  D. G. Lugg,et al.  Utilization of thermal infrared thermometry for detection of water stress in spring barley , 1986 .

[44]  G. Giacomelli,et al.  UTILIZATION OF THE ENERGY BLANKET FOR EVAPORATIVE COOLING OF THE GREENHOUSE. , 1985 .

[45]  P. Jarvis,et al.  COUPLING OF TRANSPIRATION TO THE ATMOSPHERE IN HORTICULTURAL CROPS: THE OMEGA FACTOR , 1985 .

[46]  Jerry L. Hatfield,et al.  Evaluation of canopy temperature—evapotranspiration models over various crops , 1984 .

[47]  B. White,et al.  Computer analysis of the efficacy of evaporative cooling for glasshouses in high energy environments , 1979 .

[48]  W. L. Austin The Census of Agriculture , 1930 .

[49]  Ibrahim M. Al-Helal,et al.  Effects of Ventilation Rate on the Environment of a Fan-Pad Evaporatively Cooled, Shaded Greenhouse in Extreme Arid Climates , 2007 .

[50]  H. Nishina,et al.  Evapotranspiration Estimate by Heat Balance Equation , 2005 .

[51]  D. Willits,et al.  A Comparison of Naturally Ventilated vs. Fan Ventilated Greenhouses in the Southeastern U.S. , 2005 .

[52]  Nancy L. Barber,et al.  Estimated Use of Water in the United States in 2000 , 2004 .

[53]  A. Shklyar,et al.  Combination of Forced Ventilation and Fogging Systems for Cooling Greenhouses , 2003 .

[54]  D. Willits The Penman-Monteith Equation As a Predictor of Transpiration in a Greenhouse Tomato Crop , 2003 .

[55]  H. Öztürk Evaporative Cooling Efficiency of a Fogging System for Greenhouses , 2003 .

[56]  In-Bok Lee,et al.  A Wind Tunnel Study of Natural Ventilation for Multi-Span Greenhouse Scale Models Using Two-Dimensional Particle Image Velocimetry (PIV) , 2003 .

[57]  Arend-Jan Both,et al.  A Natural Ventilation Model for Open-Roof Greenhouses , 2002 .

[58]  Ragab Ragab,et al.  SW—Soil and Water: Climate Change and Water Resources Management in Arid and Semi-arid Regions: Prospective and Challenges for the 21st Century , 2002 .

[59]  A. Bailleb,et al.  Effect of misting on transpiration and conductances of a greenhouse rose canopy , 2000 .

[60]  M. T. Balba,et al.  New Strategies and Alternatives for Greening the Desert , 1996 .

[61]  N. M. Idaikkadar,et al.  CHAPTER 10 – Census of Agriculture , 1979 .