3D adiabatic T1ρ prepared ultrashort echo time cones sequence for whole knee imaging

To develop a 3D adiabatic T1ρ prepared ultrashort echo time cones (3D AdiabT1ρ UTE‐Cones) sequence for whole knee imaging on a clinical 3T scanner.

[1]  E. Chang,et al.  Qualitative and Quantitative Ultrashort Echo Time Imaging of Musculoskeletal Tissues , 2015, Seminars in Musculoskeletal Radiology.

[2]  Jari Rautiainen,et al.  Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue , 2017, Scientific Reports.

[3]  V. Mlynárik,et al.  Transverse relaxation mechanisms in articular cartilage. , 2004, Journal of magnetic resonance.

[4]  J. Babb,et al.  T1rho MRI of menisci in patients with osteoarthritis at 3 Tesla: A preliminary study , 2014, Journal of magnetic resonance imaging : JMRI.

[5]  Michael Garwood,et al.  T1rho MRI contrast in the human brain: modulation of the longitudinal rotating frame relaxation shutter-speed during an adiabatic RF pulse. , 2006, Journal of magnetic resonance.

[6]  M. Garwood,et al.  Capturing fast relaxing spins with SWIFT adiabatic rotating frame spin–lattice relaxation (T1ρ) mapping , 2016, NMR in biomedicine.

[7]  M. Bronskill,et al.  Anisotropy of NMR properties of tissues , 1994, Magnetic resonance in medicine.

[8]  Jiang Du,et al.  Quantitative magnetization transfer ultrashort echo time imaging using a time‐efficient 3D multispoke Cones sequence , 2018, Magnetic resonance in medicine.

[9]  Weitian Chen,et al.  Errors in quantitative T1rho imaging and the correction methods. , 2015, Quantitative imaging in medicine and surgery.

[10]  Simo Saarakkala,et al.  Multiparametric MRI assessment of human articular cartilage degeneration: Correlation with quantitative histology and mechanical properties , 2015, Magnetic resonance in medicine.

[11]  N J Pelc,et al.  Rapid calculation of T1 using variable flip angle gradient refocused imaging. , 1987, Magnetic resonance imaging.

[12]  D. Felson,et al.  Structural factors associated with malalignment in knee osteoarthritis: the Boston osteoarthritis knee study. , 2005, Journal of Rheumatology.

[13]  Arijitt Borthakur,et al.  Proteoglycan depletion-induced changes in transverse relaxation maps of cartilage: comparison of T2 and T1rho. , 2002, Academic radiology.

[14]  S Majumdar,et al.  T1rho relaxation time of the meniscus and its relationship with T1rho of adjacent cartilage in knees with acute ACL injuries at 3 T. , 2009, Osteoarthritis and cartilage.

[15]  M. Haapea,et al.  Elevated adiabatic T1ρ and T2ρ in articular cartilage are associated with cartilage and bone lesions in early osteoarthritis: A preliminary study , 2017, Journal of magnetic resonance imaging : JMRI.

[16]  Ray Freeman,et al.  Supercycles for broadband heteronuclear decoupling , 1982 .

[17]  E. Chang,et al.  Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC). , 2013, Osteoarthritis and cartilage.

[18]  Jiang Du,et al.  Ultrashort TE T1rho (UTE T1rho) imaging of the Achilles tendon and meniscus , 2010, Magnetic resonance in medicine.

[19]  Yajun Ma,et al.  Ultrashort echo time magnetization transfer (UTE‐MT) imaging and modeling: magic angle independent biomarkers of tissue properties , 2016, NMR in biomedicine.

[20]  Xiaojuan Li,et al.  Accelerated T1ρ acquisition for knee cartilage quantification using compressed sensing and data‐driven parallel imaging: A feasibility study , 2016, Magnetic resonance in medicine.

[21]  Yanchun Zhu,et al.  Short T2 imaging using a 3D double adiabatic inversion recovery prepared ultrashort echo time cones (3D DIR‐UTE‐Cones) sequence , 2018, Magnetic resonance in medicine.

[22]  Yanchun Zhu,et al.  Accurate T1 mapping of short T2 tissues using a three‐dimensional ultrashort echo time cones actual flip angle imaging‐variable repetition time (3D UTE‐Cones AFI‐VTR) method , 2018, Magnetic resonance in medicine.

[23]  S. Erickson,et al.  The "magic angle" effect: background physics and clinical relevance. , 1993, Radiology.

[24]  E. Auerbach,et al.  Validation and optimization of adiabatic T1ρ and T2ρ for quantitative imaging of articular cartilage at 3 T , 2017, Magnetic resonance in medicine.

[25]  Andrew J Wheaton,et al.  Reduction of residual dipolar interaction in cartilage by spin‐lock technique , 2004, Magnetic resonance in medicine.

[26]  J. B. Kneeland,et al.  Human knee: in vivo T1(rho)-weighted MR imaging at 1.5 T--preliminary experience. , 2001, Radiology.

[27]  Dwight G Nishimura,et al.  Design and analysis of a practical 3D cones trajectory , 2006, Magnetic resonance in medicine.

[28]  Xiaojuan Li,et al.  In vivo 3T spiral imaging based multi‐slice T1ρ mapping of knee cartilage in osteoarthritis , 2005, Magnetic resonance in medicine.

[29]  E. Chang,et al.  Magic angle effect plays a major role in both T1rho and T2 relaxation in articular cartilage. , 2017, Osteoarthritis and cartilage.

[30]  R. Schneiderman,et al.  Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: a comparison between the processes of ageing and degeneration in human hip cartilage. , 1989, Connective tissue research.

[31]  G. Bydder,et al.  UTE imaging with simultaneous water and fat signal suppression using a time‐efficient multispoke inversion recovery pulse sequence , 2016, Magnetic resonance in medicine.

[32]  L DelaBarre,et al.  The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. , 2001, Journal of magnetic resonance.

[33]  J. B. Kneeland,et al.  T1ρ‐relaxation in articular cartilage: Effects of enzymatic degradation , 1997, Magnetic resonance in medicine.

[34]  J. B. Kneeland,et al.  T1ρ relaxation mapping in human osteoarthritis (OA) cartilage: Comparison of T1ρ with T2 , 2006 .

[35]  Yang Xia,et al.  Dependencies of multi-component T2 and T1ρ relaxation on the anisotropy of collagen fibrils in bovine nasal cartilage. , 2011, Journal of magnetic resonance.

[36]  Jiang Du,et al.  Three‐dimensional ultrashort echo time cones T1ρ (3D UTE‐cones‐T1ρ) imaging , 2017, NMR in biomedicine.

[37]  A Guermazi,et al.  The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. , 2006, Arthritis and rheumatism.

[38]  Olli Gröhn,et al.  Exchange‐influenced T2ρ contrast in human brain images measured with adiabatic radio frequency pulses , 2005, Magnetic resonance in medicine.

[39]  J. Ellermann,et al.  Multi‐parametric MRI characterization of enzymatically degraded articular cartilage , 2016, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[40]  M. Benjamin,et al.  Combined high-resolution magnetic resonance imaging and histological examination to explore the role of ligaments and tendons in the phenotypic expression of early hand osteoarthritis , 2006, Annals of the rheumatic diseases.

[41]  G. Bydder,et al.  Ultrashort TE T1ρ magic angle imaging , 2013, Magnetic resonance in medicine.

[42]  R. Knispel,et al.  Dispersion of proton spin-lattice relaxation in tissues☆ , 1974 .

[43]  P A Dieppe,et al.  Yet more evidence that osteoarthritis is not a cartilage disease , 2006, Annals of the rheumatic diseases.

[44]  Sharmila Majumdar,et al.  Meniscal measurements of T1rho and T2 at MR imaging in healthy subjects and patients with osteoarthritis. , 2008, Radiology.