Parameter estimation for multivariate exponential sums

The recovery of signal parameters from noisy sampled data is an essential problem in digital signal processing. In this paper, we discuss the numerical solution of the following parameter estimation problem. Let h be a multivariate exponential sum, i.e., h is a finite linear combination of complex exponentials with pairwise different frequency vectors. Determine all parameters of h, i.e., all frequency vectors, all coefficients, and the number of exponentials, if finitely many equispaced sampled data of h are given. Using Ingham–type inequalities, the stability of the reconstructed exponential sum h̃ is discussed both in the square and uniform norm. Further we show that a rectangular Fourier–type matrix has a bounded condition number, if the frequency vectors are well–separated and if the number of samples is sufficiently large. Then we reconstruct the parameters of an exponential sum h by a novel algorithm, the sparse approximate Prony method (SAPM), where we use only some data sampled along few lines. The first part of SAPM estimates the frequency vectors by using the approximate Prony method in the univariate case. The second part of SAPM computes all coefficients by solving an overdetermined linear Vandermonde–type system. Numerical experiments show the performance of our method.

[1]  A. Ingham Some trigonometrical inequalities with applications to the theory of series , 1936 .

[2]  A. Rényi,et al.  On projections of probability distributions , 1952 .

[3]  D. Braess Nonlinear Approximation Theory , 1986 .

[4]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[5]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[6]  Randolph L. Moses,et al.  Two-dimensional Prony modeling and parameter estimation , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[7]  K. Gröchenig RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING , 1992 .

[8]  T. Sarkar,et al.  Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .

[9]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[10]  A. Lindner A Universal Constant for Exponential Riesz Sequences , 2000 .

[11]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[12]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[13]  Ññøøøññøø Blockin Random Sampling of Multivariate Trigonometric Polynomials , 2004 .

[14]  G. Beylkin,et al.  On approximation of functions by exponential sums , 2005 .

[15]  Thierry Blu,et al.  Extrapolation and Interpolation) , 2022 .

[16]  V. Komornik,et al.  Semi-Discrete Ingham-Type Inequalities , 2007 .

[17]  Pier Luigi Dragotti,et al.  Sampling Schemes for Multidimensional Signals With Finite Rate of Innovation , 2007, IEEE Transactions on Signal Processing.

[18]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[19]  Holger Rauhut,et al.  Random Sampling of Sparse Trigonometric Polynomials, II. Orthogonal Matching Pursuit versus Basis Pursuit , 2008, Found. Comput. Math..

[20]  Daniel Potts,et al.  Numerical stability of nonequispaced fast Fourier transforms , 2008 .

[21]  L. De Lathauwer,et al.  Exponential data fitting using multilinear algebra: the decimative case , 2009 .

[22]  Daniel Potts,et al.  Parameter estimation for exponential sums by approximate Prony method , 2010, Signal Process..

[23]  Fredrik Andersson,et al.  Nonlinear approximation of functions in two dimensions by sums of exponential functions , 2010 .

[24]  Victor Pereyra and Godela Scherer Exponential data fitting , 2010 .

[25]  Mark A. Iwen,et al.  Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..

[26]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[27]  Daniel Potts,et al.  Nonlinear Approximation by Sums of Exponentials and Translates , 2011, SIAM J. Sci. Comput..

[28]  Zhiqiang Xu,et al.  Deterministic sampling of sparse trigonometric polynomials , 2010, J. Complex..

[29]  D. Potts,et al.  Parameter estimation for nonincreasing exponential sums by Prony-like methods , 2013 .