Parameter estimation for multivariate exponential sums
暂无分享,去创建一个
[1] A. Ingham. Some trigonometrical inequalities with applications to the theory of series , 1936 .
[2] A. Rényi,et al. On projections of probability distributions , 1952 .
[3] D. Braess. Nonlinear Approximation Theory , 1986 .
[4] Thomas Kailath,et al. ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..
[5] Tapan K. Sarkar,et al. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..
[6] Randolph L. Moses,et al. Two-dimensional Prony modeling and parameter estimation , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[7] K. Gröchenig. RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING , 1992 .
[8] T. Sarkar,et al. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials , 1995 .
[9] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[10] A. Lindner. A Universal Constant for Exponential Riesz Sequences , 2000 .
[11] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[12] Thierry Blu,et al. Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..
[13] Ññøøøññøø Blockin. Random Sampling of Multivariate Trigonometric Polynomials , 2004 .
[14] G. Beylkin,et al. On approximation of functions by exponential sums , 2005 .
[15] Thierry Blu,et al. Extrapolation and Interpolation) , 2022 .
[16] V. Komornik,et al. Semi-Discrete Ingham-Type Inequalities , 2007 .
[17] Pier Luigi Dragotti,et al. Sampling Schemes for Multidimensional Signals With Finite Rate of Innovation , 2007, IEEE Transactions on Signal Processing.
[18] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[19] Holger Rauhut,et al. Random Sampling of Sparse Trigonometric Polynomials, II. Orthogonal Matching Pursuit versus Basis Pursuit , 2008, Found. Comput. Math..
[20] Daniel Potts,et al. Numerical stability of nonequispaced fast Fourier transforms , 2008 .
[21] L. De Lathauwer,et al. Exponential data fitting using multilinear algebra: the decimative case , 2009 .
[22] Daniel Potts,et al. Parameter estimation for exponential sums by approximate Prony method , 2010, Signal Process..
[23] Fredrik Andersson,et al. Nonlinear approximation of functions in two dimensions by sums of exponential functions , 2010 .
[24] Victor Pereyra and Godela Scherer. Exponential data fitting , 2010 .
[25] Mark A. Iwen,et al. Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..
[26] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[27] Daniel Potts,et al. Nonlinear Approximation by Sums of Exponentials and Translates , 2011, SIAM J. Sci. Comput..
[28] Zhiqiang Xu,et al. Deterministic sampling of sparse trigonometric polynomials , 2010, J. Complex..
[29] D. Potts,et al. Parameter estimation for nonincreasing exponential sums by Prony-like methods , 2013 .