Large-Area In-Situ Oxide, GaN Interlayer-Based Vertical Trench MOSFET (OG-FET)

We present a large-area <italic>in-situ</italic> oxide, GaN interlayer-based vertical trench MOSFET (OG-FET) with a metal organic chemical vapor deposition regrown 10-nm unintentional-doped-GaN interlayer as the channel and 50-nm <italic>in-situ</italic> Al<sub>2</sub>O<sub>3</sub> as the gate dielectric. The threshold voltage of the device on bulk GaN substrate was 1 V measured at <inline-formula> <tex-math notation="LaTeX">$\text{I}_\mathrm {on}/\text{I}_\mathrm {off}= 10^{7}$ </tex-math></inline-formula>. The OG-FET with an area scaled to 0.2 mm<sup>2</sup> demonstrated a breakdown voltage (<inline-formula> <tex-math notation="LaTeX">$\text{V}_\mathrm {BR}$ </tex-math></inline-formula>) of 320 V and an on-state resistance (<inline-formula> <tex-math notation="LaTeX">$\text{R}_\mathrm {on}$ </tex-math></inline-formula>) of <inline-formula> <tex-math notation="LaTeX">$3.8~\Omega $ </tex-math></inline-formula> (specific on-state resistance: <inline-formula> <tex-math notation="LaTeX">$\text{R}_\mathrm {on,sp}= 7.6\,\,\text{m}\Omega \,\,\cdot $ </tex-math></inline-formula> cm<sup>2</sup>). For the single unit cell OG-FET from the same sample, <inline-formula> <tex-math notation="LaTeX">$\text{V}_\mathrm {BR}$ </tex-math></inline-formula> was as high as 700 V (measured at <inline-formula> <tex-math notation="LaTeX">$\text{V}_\mathrm {GS}=-10$ </tex-math></inline-formula> V), corresponding to a breakdown electric field of 1.4 MV/cm and <inline-formula> <tex-math notation="LaTeX">$\text{R}_\mathrm {on,sp}$ </tex-math></inline-formula> of 0.98 <inline-formula> <tex-math notation="LaTeX">$\text{m}\Omega ~\cdot $ </tex-math></inline-formula> cm<sup>2</sup>. On our control sample, which was grown on sapphire substrate, a 1-A current was measured as well. These results show the potential of the OG-FET in power conversion applications.

[1]  T. Oka,et al.  Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV , 2014 .

[2]  K. Boutros,et al.  1200-V Normally Off GaN-on-Si Field-Effect Transistors With Low Dynamic on -Resistance , 2011, IEEE Electron Device Letters.

[3]  D. Ueda,et al.  GaN on Si Technologies for Power Switching Devices , 2013, IEEE Transactions on Electron Devices.

[4]  S. Keller,et al.  Normally OFF Trench CAVET With Active Mg-Doped GaN as Current Blocking Layer , 2017, IEEE Transactions on Electron Devices.

[5]  Yu Cao,et al.  600 V/ $1.7~\Omega$ Normally-Off GaN Vertical Trench Metal–Oxide–Semiconductor Field-Effect Transistor , 2016, IEEE Electron Device Letters.

[6]  U. Mishra,et al.  Controlled low Si doping and high breakdown voltages in GaN on sapphire grown by MOCVD , 2016 .

[7]  B. Lu,et al.  High-Performance Integrated Dual-Gate AlGaN/GaN Enhancement-Mode Transistor , 2010, IEEE Electron Device Letters.

[8]  Wenwen Li,et al.  Design and fabrication of a 1.2 kV GaN‐based MOS vertical transistor for single chip normally off operation , 2016 .

[9]  U. Mishra,et al.  OG-FET: An In-Situ ${O}$ xide, ${G}$ aN Interlayer-Based Vertical Trench MOSFET , 2016, IEEE Electron Device Letters.

[10]  Umesh K. Mishra,et al.  AlGaN/GaN current aperture vertical electron transistors with regrown channels , 2004 .

[11]  U. Mishra,et al.  In Situ Oxide, GaN Interlayer-Based Vertical Trench MOSFET (OG-FET) on Bulk GaN substrates , 2017, IEEE Electron Device Letters.

[12]  S. Chowdhury AlGaN/GaN CAVETs for high power switching application , 2010 .

[13]  Shu Yang,et al.  600-V Normally Off ${\rm SiN}_{x}$ /AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse , 2013, IEEE Electron Device Letters.

[14]  U. Mishra,et al.  1 kV field plated in-situ oxide, GaN interlayer based vertical trench MOSFET (OG-FET) , 2017, 2017 75th Annual Device Research Conference (DRC).

[15]  Tsutomu Ina,et al.  1.8 mΩ·cm2 vertical GaN-based trench metal–oxide–semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV-class operation , 2015 .

[16]  O. Aktas,et al.  Characterization of vertical GaN p–n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures , 2015 .

[17]  D. Bour,et al.  1.5-kV and 2.2-m (Omega ) -cm (^{2}) Vertical GaN Transistors on Bulk-GaN Substrates , 2014 .

[18]  Tetsuzo Ueda,et al.  1.7 kV/1.0 mΩcm2 normally-off vertical GaN transistor on GaN substrate with regrown p-GaN/AlGaN/GaN semipolar gate structure , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[19]  Saptarshi Mandal,et al.  Dispersion Free 450-V p GaN-Gated CAVETs With Mg-ion Implanted Blocking Layer , 2017, IEEE Electron Device Letters.

[20]  Dong Ji,et al.  Design of 1.2 kV Power Switches With Low $R_{\mathrm{{\scriptscriptstyle ON}}}$ Using GaN-Based Vertical JFET , 2015, IEEE Transactions on Electron Devices.

[21]  M. Van Hove,et al.  Low On-Resistance High-Breakdown Normally Off AlN/GaN/AlGaN DHFET on Si Substrate , 2010, IEEE Electron Device Letters.

[22]  U. Mishra,et al.  Enhancement and Depletion Mode AlGaN/GaN CAVET With Mg-Ion-Implanted GaN as Current Blocking Layer , 2008, IEEE Electron Device Letters.

[23]  U. Mishra,et al.  First report of scaling a normally-off in-situ oxide, GaN interlayer based vertical trench MOSFET (OG-FET) , 2017, 2017 75th Annual Device Research Conference (DRC).

[24]  T. Palacios,et al.  High-Performance GaN Vertical Fin Power Transistors on Bulk GaN Substrates , 2017, IEEE Electron Device Letters.