Plasmid Flux in Escherichia coli ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences

Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.

[1]  Nicola K. Petty,et al.  Global dissemination of a multidrug resistant Escherichia coli clone , 2014, Proceedings of the National Academy of Sciences.

[2]  Shira L. Broschat,et al.  Using Protein Clusters from Whole Proteomes to Construct and Augment a Dendrogram , 2013, Adv. Bioinformatics.

[3]  J. Šmarda,et al.  Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor , 2010, BMC Microbiology.

[4]  Kenneth G. Frey,et al.  Genomic Comparison of Escherichia coli O104:H4 Isolates from 2009 and 2011 Reveals Plasmid, and Prophage Heterogeneity, Including Shiga Toxin Encoding Phage stx2 , 2012, PloS one.

[5]  R. Bonomo,et al.  Complete Nucleotide Sequence of a blaKPC-Harboring IncI2 Plasmid and Its Dissemination in New Jersey and New York Hospitals , 2013, Antimicrobial Agents and Chemotherapy.

[6]  Tiruvayipati Suma Avasthi,et al.  Genome of Multidrug-Resistant Uropathogenic Escherichia coli Strain NA114 from India , 2011, Journal of bacteriology.

[7]  L. Guize,et al.  Absence of CTX-M Enzymes but High Prevalence of Clones, Including Clone ST131, among Fecal Escherichia coli Isolates from Healthy Subjects Living in the Area of Paris, France , 2008, Journal of Clinical Microbiology.

[8]  T. Johnson,et al.  Plasmid Replicon Typing of Commensal and Pathogenic Escherichia coli Isolates , 2007, Applied and Environmental Microbiology.

[9]  M. Hattori,et al.  Complete Genome Sequence of the Wild-Type Commensal Escherichia coli Strain SE15, Belonging to Phylogenetic Group B2 , 2009, Journal of bacteriology.

[10]  M. Gardam,et al.  Complete Nucleotide Sequence of a 92-Kilobase Plasmid Harboring the CTX-M-15 Extended-Spectrum Beta-Lactamase Involved in an Outbreak in Long-Term-Care Facilities in Toronto, Canada , 2004, Antimicrobial Agents and Chemotherapy.

[11]  C. Constantinidou,et al.  Genomic analysis uncovers a phenotypically diverse but genetically homogeneous Escherichia coli ST131 clone circulating in unrelated urinary tract infections. , 2012, The Journal of antimicrobial chemotherapy.

[12]  J. Blanco,et al.  Molecular epidemiology of Escherichia coli producing extended-spectrum {beta}-lactamases in Lugo (Spain): dissemination of clone O25b:H4-ST131 producing CTX-M-15. , 2009, The Journal of antimicrobial chemotherapy.

[13]  Masahira Hattori,et al.  Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli , 2009, Proceedings of the National Academy of Sciences.

[14]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[15]  Maliha Aziz,et al.  Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli. , 2013, The Journal of infectious diseases.

[16]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[17]  Nicola K. Petty,et al.  Insights into a Multidrug Resistant Escherichia coli Pathogen of the Globally Disseminated ST131 Lineage: Genome Analysis and Virulence Mechanisms , 2011, PloS one.

[18]  Allison D. Griggs,et al.  Comparative Genomics of Recent Shiga Toxin-Producing Escherichia coli O104:H4: Short-Term Evolution of an Emerging Pathogen , 2013, mBio.

[19]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[20]  J. Saunders,et al.  Mosaic plasmids and mosaic replicons: evolutionary lessons from the analysis of genetic diversity in IncFII-related replicons. , 2000, Microbiology.

[21]  E. Gotuzzo,et al.  Rapid Dissemination and Diversity of CTX-M Extended-Spectrum β-Lactamase Genes in Commensal Escherichia coli Isolates from Healthy Children from Low-Resource Settings in Latin America , 2007, Antimicrobial Agents and Chemotherapy.

[22]  R. Moreau,et al.  Prevalence of day-care centre children (France) with faecal CTX-M-producing Escherichia coli comprising O25b:H4 and O16:H5 ST131 strains. , 2014, The Journal of antimicrobial chemotherapy.

[23]  R. Bonomo,et al.  Complete Sequence of a KPC-Producing IncN Multidrug-Resistant Plasmid from an Epidemic Escherichia coli Sequence Type 131 Strain in China , 2014, Antimicrobial Agents and Chemotherapy.

[24]  Nicholas J Croucher,et al.  Bacterial genomes in epidemiology—present and future , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[25]  D. Trott,et al.  Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods. , 2011, Veterinary microbiology.

[26]  Johannes Söding,et al.  kClust: fast and sensitive clustering of large protein sequence databases , 2013, BMC Bioinformatics.

[27]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[28]  L. Price,et al.  The Epidemic of Extended-Spectrum-β-Lactamase-Producing Escherichia coli ST131 Is Driven by a Single Highly Pathogenic Subclone, H30-Rx , 2013, mBio.

[29]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[30]  David A Rasko,et al.  Refining the pathovar paradigm via phylogenomics of the attaching and effacing Escherichia coli , 2013, Proceedings of the National Academy of Sciences.

[31]  Thomas M. Keane,et al.  ABACAS: algorithm-based automatic contiguation of assembled sequences , 2009, Bioinform..

[32]  M. Kuskowski,et al.  Associations between multidrug resistance, plasmid content, and virulence potential among extraintestinal pathogenic and commensal Escherichia coli from humans and poultry. , 2012, Foodborne pathogens and disease.

[33]  Fernando de la Cruz,et al.  The Repertoire of ICE in Prokaryotes Underscores the Unity, Diversity, and Ubiquity of Conjugation , 2011, PLoS genetics.

[34]  J. Klimeš,et al.  Dogs of Nomadic Pastoralists in Northern Kenya Are Reservoirs of Plasmid-Mediated Cephalosporin- and Quinolone-Resistant Escherichia coli, Including Pandemic Clone B2-O25-ST131 , 2012, Antimicrobial Agents and Chemotherapy.

[35]  T. Komano,et al.  Nucleotide sequence of the R721 shufflon , 1992, Journal of bacteriology.

[36]  M. Borodovsky,et al.  GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. , 2001, Nucleic acids research.

[37]  Ming Sun,et al.  Evolution and dynamics of megaplasmids with genome sizes larger than 100 kb in the Bacillus cereus group , 2013, BMC Evolutionary Biology.

[38]  A. Wallensten,et al.  Globally disseminated human pathogenic Escherichia coli of O25b-ST131 clone, harbouring blaCTX-M-15 , found in Glaucous-winged gull at remote Commander Islands, Russia. , 2010, Environmental microbiology reports.

[39]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[40]  P. Nordmann,et al.  Characterization of an IncFII Plasmid Encoding NDM-1 from Escherichia coli ST131 , 2012, PloS one.

[41]  K. Shutt,et al.  Features of infections due to Klebsiella pneumoniae carbapenemase-producing Escherichia coli: emergence of sequence type 131. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[42]  T. Johnson,et al.  Pathogenomics of the Virulence Plasmids of Escherichia coli , 2009, Microbiology and Molecular Biology Reviews.

[43]  D. Andersson,et al.  Transfer of an Escherichia coli ST131 multiresistance cassette has created a Klebsiella pneumoniae-specific plasmid associated with a major nosocomial outbreak. , 2012, The Journal of antimicrobial chemotherapy.

[44]  C. Médigue,et al.  The Plasmid of Escherichia coli Strain S88 (O45:K1:H7) That Causes Neonatal Meningitis Is Closely Related to Avian Pathogenic E. coli Plasmids and Is Associated with High-Level Bacteremia in a Neonatal Rat Meningitis Model , 2009, Infection and Immunity.

[45]  Eric Peyretaillade,et al.  Complete Genome Sequence of Crohn's Disease-Associated Adherent-Invasive E. coli Strain LF82 , 2010, PloS one.

[46]  F. Baquero,et al.  Dissemination of Clonally Related Escherichia coli Strains Expressing Extended-Spectrum β-Lactamase CTX-M-15 , 2008, Emerging infectious diseases.

[47]  N. Thomson,et al.  New Insights into the Bacterial Fitness-Associated Mechanisms Revealed by the Characterization of Large Plasmids of an Avian Pathogenic E. coli , 2012, PloS one.

[48]  J. Blanco,et al.  Recent Emergence of Clonal Group O25b:K1:H4-B2-ST131 ibeA Strains among Escherichia coli Poultry Isolates, Including CTX-M-9-Producing Strains, and Comparison with Clinical Human Isolates , 2010, Applied and Environmental Microbiology.

[49]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[50]  F. de la Cruz,et al.  Ordering the bestiary of genetic elements transmissible by conjugation , 2013, Mobile genetic elements.

[51]  R. Bonomo,et al.  Comparative Genomic Analysis of KPC-Encoding pKpQIL-Like Plasmids and Their Distribution in New Jersey and New York Hospitals , 2014, Antimicrobial Agents and Chemotherapy.

[52]  I. Paulsen,et al.  Complete Sequence of pJIE143, a pir-Type Plasmid Carrying ISEcp1-blaCTX-M-15 from an Escherichia coli ST131 Isolate , 2011, Antimicrobial Agents and Chemotherapy.

[53]  M. Couturier,et al.  Identification and classification of bacterial plasmids. , 1988, Microbiological reviews.

[54]  M. Kuskowski,et al.  Escherichia coli sequence type 131 (ST131) subclone H30 as an emergent multidrug-resistant pathogen among US veterans. , 2013, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[55]  H. Karch,et al.  The large plasmids of Shiga-toxin-producing Escherichia coli (STEC) are highly variable genetic elements. , 1999, Microbiology.

[56]  F. de la Cruz,et al.  Four Main Virotypes among Extended-Spectrum-β-Lactamase-Producing Isolates of Escherichia coli O25b:H4-B2-ST131: Bacterial, Epidemiological, and Clinical Characteristics , 2013, Journal of Clinical Microbiology.

[57]  B. Dujon,et al.  The genomic tree as revealed from whole proteome comparisons. , 1999, Genome research.

[58]  W. Witte,et al.  A novel IS26 structure surrounds blaCTX-M genes in different plasmids from German clinical Escherichia coli isolates. , 2010, Journal of medical microbiology.

[59]  Zhemin Zhou,et al.  pO157_Sal, a Novel Conjugative Plasmid Detected in Outbreak Isolates of Escherichia coli O157:H7 , 2011, Journal of Clinical Microbiology.

[60]  L. Price,et al.  Molecular Epidemiology of Escherichia coli Sequence Type 131 and Its H30 and H30-Rx Subclones among Extended-Spectrum-β-Lactamase-Positive and -Negative E. coli Clinical Isolates from the Chicago Region, 2007 to 2010 , 2013, Antimicrobial Agents and Chemotherapy.

[61]  J. Colbourne,et al.  Evolution of Enterohemorrhagic Escherichia coli Hemolysin Plasmids and the Locus for Enterocyte Effacement in Shiga Toxin-Producing E. coli , 1998, Infection and Immunity.

[62]  Fernando de la Cruz,et al.  Mobility of Plasmids , 2010, Microbiology and Molecular Biology Reviews.

[63]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[64]  A. Carattoli Plasmids in Gram negatives: molecular typing of resistance plasmids. , 2011, International journal of medical microbiology : IJMM.

[65]  Daniel Falush,et al.  Sex and virulence in Escherichia coli: an evolutionary perspective , 2006, Molecular microbiology.

[66]  E. Denamur,et al.  Rapid and Specific Detection, Molecular Epidemiology, and Experimental Virulence of the O16 Subgroup within Escherichia coli Sequence Type 131 , 2014, Journal of Clinical Microbiology.

[67]  Fernando de la Cruz,et al.  Identification of bacterial plasmids based on mobility and plasmid population biology. , 2011, FEMS microbiology reviews.

[68]  Fredj Tekaia,et al.  Genome Trees from Conservation Profiles , 2005, PLoS Comput. Biol..

[69]  F. Hu,et al.  Molecular Epidemiology of KPC-Producing Escherichia coli: Occurrence of ST131-fimH30 Subclone Harboring pKpQIL-Like IncFIIk Plasmid , 2014, Antimicrobial Agents and Chemotherapy.

[70]  J. Blanco,et al.  Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. , 2007, The Journal of antimicrobial chemotherapy.

[71]  Manuel Espinosa,et al.  Plasmids Replication and Control of Circular Bacterial , 1998 .

[72]  L. Price,et al.  Complete Genome Sequence of the Epidemic and Highly Virulent CTX-M-15-Producing H30-Rx Subclone of Escherichia coli ST131 , 2013, Genome Announcements.

[73]  T. Chakraborty,et al.  Complete Genome Sequence of Phage-Like Plasmid pECOH89, Encoding CTX-M-15 , 2014, Genome Announcements.

[74]  F. de la Cruz,et al.  A Degenerate Primer MOB Typing (DPMT) Method to Classify Gamma-Proteobacterial Plasmids in Clinical and Environmental Settings , 2012, PloS one.

[75]  D. Merrell,et al.  Cellular and Infection Microbiology , 2022 .

[76]  J. Jofre,et al.  Potential impact of environmental bacteriophages in spreading antibiotic resistance genes. , 2013, Future microbiology.

[77]  G. Peirano,et al.  Fluoroquinolone-Resistant Escherichia coli Sequence Type 131 Isolates Causing Bloodstream Infections in a Canadian Region with a Centralized Laboratory System: Rapid Emergence of the H30-Rx Sublineage , 2014, Antimicrobial Agents and Chemotherapy.

[78]  A. Carattoli,et al.  Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. , 2009, The Journal of antimicrobial chemotherapy.

[79]  M. Ragan,et al.  Lateral genetic transfer and the construction of genetic exchange communities. , 2011, FEMS microbiology reviews.

[80]  Mark J. Pallen,et al.  Bacterial pathogenomics , 2007, Nature.

[81]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[82]  J. Iredell,et al.  Recombination in IS26 and Tn2 in the Evolution of Multiresistance Regions Carrying blaCTX-M-15 on Conjugative IncF Plasmids from Escherichia coli , 2011, Antimicrobial Agents and Chemotherapy.

[83]  Nicola K. Petty,et al.  BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons , 2011, BMC Genomics.

[84]  J. Cheesbrough,et al.  High Metabolic Potential May Contribute to the Success of ST131 Uropathogenic Escherichia coli , 2012, Journal of Clinical Microbiology.

[85]  Z. Zong Complete Sequence of pJIE186-2, a Plasmid Carrying Multiple Virulence Factors from a Sequence Type 131 Escherichia coli O25 Strain , 2012, Antimicrobial Agents and Chemotherapy.

[86]  F. Baquero,et al.  Multilevel population genetics in antibiotic resistance. , 2011, FEMS microbiology reviews.

[87]  Xavier Bertrand,et al.  Escherichia coli ST131, an Intriguing Clonal Group , 2014, Clinical Microbiology Reviews.

[88]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[89]  Julian Parkhill,et al.  Characterisation and distribution of a cryptic Salmonella typhi plasmid pHCM2. , 2002, Plasmid.

[90]  S. Svenningsen,et al.  A Quorum-Sensing-Induced Bacteriophage Defense Mechanism , 2013, mBio.

[91]  I. Matic,et al.  Role of Intraspecies Recombination in the Spread of Pathogenicity Islands within the Escherichia coli Species , 2009, PLoS pathogens.

[92]  J. Jofre,et al.  Detection of quinolone-resistant Escherichia coli isolates belonging to clonal groups O25b:H4-B2-ST131 and O25b:H4-D-ST69 in raw sewage and river water in Barcelona, Spain. , 2013, The Journal of antimicrobial chemotherapy.

[93]  David J. Edwards,et al.  Beginner’s guide to comparative bacterial genome analysis using next-generation sequence data , 2013, Microbial Informatics and Experimentation.

[94]  A. Robicsek,et al.  Comparison of Escherichia coli ST131 Pulsotypes, by Epidemiologic Traits, 1967–2009 , 2012, Emerging infectious diseases.

[95]  Eric J Alm,et al.  Horizontal gene transfer and the evolution of bacterial and archaeal population structure. , 2013, Trends in genetics : TIG.

[96]  N. Woodford,et al.  Complete Nucleotide Sequences of Plasmids pEK204, pEK499, and pEK516, Encoding CTX-M Enzymes in Three Major Escherichia coli Lineages from the United Kingdom, All Belonging to the International O25:H4-ST131 Clone , 2009, Antimicrobial Agents and Chemotherapy.

[97]  M. Kuskowski,et al.  Virulence characteristics and phylogenetic background of multidrug-resistant and antimicrobial-susceptible clinical isolates of Escherichia coli from across the United States, 2000-2001. , 2004, The Journal of infectious diseases.

[98]  J. Blanco,et al.  Spread of Escherichia coli O25b:H4-B2-ST131 producing CTX-M-15 and SHV-12 with high virulence gene content in Barcelona (Spain). , 2011, The Journal of antimicrobial chemotherapy.

[99]  Alessandra Carattoli,et al.  Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. , 2010, The Journal of antimicrobial chemotherapy.

[100]  G. Donelli,et al.  Characterization of Globally Spread Escherichia coli ST131 Isolates (1991 to 2010) , 2012, Antimicrobial Agents and Chemotherapy.

[101]  Daniel J. Wilson,et al.  Transforming clinical microbiology with bacterial genome sequencing , 2012, Nature Reviews Genetics.

[102]  N. Thomson,et al.  Complete Sequence and Molecular Epidemiology of IncK Epidemic Plasmid Encoding blaCTX-M-14 , 2011, Emerging infectious diseases.

[103]  J. Blanco,et al.  National survey of Escherichia coli causing extraintestinal infections reveals the spread of drug-resistant clonal groups O25b:H4-B2-ST131, O15:H1-D-ST393 and CGA-D-ST69 with high virulence gene content in Spain. , 2011, The Journal of antimicrobial chemotherapy.

[104]  F. Baquero,et al.  Spread of blaCTX-M-14 Is Driven Mainly by IncK Plasmids Disseminated among Escherichia coli Phylogroups A, B1, and D in Spain , 2009, Antimicrobial Agents and Chemotherapy.

[105]  A. Carattoli,et al.  Identification of plasmids by PCR-based replicon typing. , 2005, Journal of microbiological methods.

[106]  H. Yano,et al.  Diverse Broad-Host-Range Plasmids from Freshwater Carry Few Accessory Genes , 2013, Applied and Environmental Microbiology.

[107]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[108]  N. Woodford,et al.  Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. , 2011, FEMS microbiology reviews.

[109]  P. Gajer,et al.  The Pangenome Structure of Escherichia coli: Comparative Genomic Analysis of E. coli Commensal and Pathogenic Isolates , 2008, Journal of bacteriology.

[110]  J. Blanco,et al.  Emergence of new variants of ST131 clonal group among extraintestinal pathogenic Escherichia coli producing extended-spectrum β-lactamases. , 2013, International journal of antimicrobial agents.

[111]  C. Combescure,et al.  Virulence Potential and Genomic Mapping of the Worldwide Clone Escherichia coli ST131 , 2012, PloS one.

[112]  E. Domann,et al.  Complete Sequences of Plasmids from the Hemolytic-Uremic Syndrome-Associated Escherichia coli Strain HUSEC41 , 2012, Journal of bacteriology.

[113]  Teresa M. Coque,et al.  Antibiotic resistance shaping multi-level population biology of bacteria , 2013, Front. Microbiol..

[114]  R. Schimke Gene amplification in cultured animal cells , 1984, Cell.

[115]  A. Danchin,et al.  Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths , 2009, PLoS genetics.

[116]  Minsik Kim,et al.  Complete Genome Sequence of Bacteriophage SSU5 Specific for Salmonella enterica serovar Typhimurium Rough Strains , 2012, Journal of Virology.

[117]  Alessandra Carattoli,et al.  Plasmids and the spread of resistance. , 2013, International journal of medical microbiology : IJMM.

[118]  B. Liu,et al.  Rates of Mutation and Host Transmission for an Escherichia coli Clone over 3 Years , 2011, PloS one.

[119]  N. Woodford,et al.  Isolation of fluoroquinolone-resistant O25b:H4-ST131 Escherichia coli with CTX-M-14 extended-spectrum β-lactamase from UK river water. , 2011, The Journal of antimicrobial chemotherapy.