Quantifying rigid and nonrigid motion of liver tumors during stereotactic body radiation therapy.

PURPOSE To quantify rigid and nonrigid motion of liver tumors using reconstructed 3-dimensional (3D) fiducials from stereo imaging during CyberKnife-based stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS Twenty-three liver patients treated with 3 fractions of SBRT were used in this study. After 2 orthogonal kilovoltage images were taken during treatment, the 3D locations of the fiducials were generated by the CyberKnife system and validated using geometric derivations. A total of 4824 pairs of kilovoltage images from start to end of treatment were analyzed. For rigid motion, the rotational angles and translational shifts were reported by aligning 3D fiducial groups from different image pairs, using least-squares fitting. For nonrigid motion, we quantified interfractional tumor volume variations by using the proportional volume derived from the fiducials, which correlates to the sum of interfiducial distances. The individual fiducial displacements were also reported (1) after rigid corrections and (2) without angle corrections. RESULTS The proportional volume derived by the fiducials demonstrated a volume-increasing trend in the second (101.9% ± 3.6%) and third (101.0 ± 5.9%) fractions among most patients, possibly due to radiation-induced edema. For all patients, the translational shifts in left-right, anteroposterior, and superoinferior directions were 2.1 ± 2.3 mm, 2.9 ± 2.8 mm, and 6.4 ± 5.5 mm, respectively. The greatest translational shifts occurred in the superoinferior direction, likely due to respiratory motion from the diaphragm. The rotational angles in roll, pitch, and yaw were 1.2° ± 1.8°, 1.8° ± 2.4°, and 1.7° ± 2.1°, respectively. The 3D individual fiducial displacements with rigid corrections were 0.2 ± 0.2 mm and increased to 0.5 ± 0.4 mm without rotational corrections. CONCLUSIONS Accurate 3D locations of internal fiducials can be reconstructed from stereo imaging during treatment. As an effective surrogate to tumor motion, fiducials provide a close estimation of both rigid and nonrigid motion of liver tumors. The reported displacements could be further utilized for tumor margin definition and motion management in conventional linear accelerator-based liver SBRT.

[1]  Robert D Timmerman,et al.  A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases. , 2005, International journal of radiation oncology, biology, physics.

[2]  Andrea Bezjak,et al.  Interfraction and intrafraction changes in amplitude of breathing motion in stereotactic liver radiotherapy. , 2010, International journal of radiation oncology, biology, physics.

[3]  E. Yorke,et al.  Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment. , 2004, Seminars in radiation oncology.

[4]  J. Sanabria,et al.  Cyberknife Stereotactic Body Radiation Therapy for Nonresectable Tumors of the Liver: Preliminary Results , 2010, HPB surgery : a world journal of hepatic, pancreatic and biliary surgery.

[5]  K. Wallner,et al.  Electromagnetic transponders indicate prostate size increase followed by decrease during the course of external beam radiation therapy. , 2011, International journal of radiation oncology, biology, physics.

[6]  Michael Lock,et al.  Radiotherapy for liver metastases: a review of evidence. , 2012, International journal of radiation oncology, biology, physics.

[7]  Shinichi Shimizu,et al.  Registration accuracy and possible migration of internal fiducial gold marker implanted in prostate and liver treated with real-time tumor-tracking radiation therapy (RTRT). , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[8]  Gábor Székely,et al.  Systematic errors in respiratory gating due to intrafraction deformations of the liver. , 2007, Medical physics.

[9]  Maria Hawkins,et al.  Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  K. Brock,et al.  Interfraction liver shape variability and impact on GTV position during liver stereotactic radiotherapy using abdominal compression. , 2011, International journal of radiation oncology, biology, physics.

[11]  Michael Velec,et al.  Accumulated dose in liver stereotactic body radiotherapy: positioning, breathing, and deformation effects. , 2012, International journal of radiation oncology, biology, physics.

[12]  Ben Heijmen,et al.  Reduction of respiratory liver tumor motion by abdominal compression in stereotactic body frame, analyzed by tracking fiducial markers implanted in liver. , 2008, International journal of radiation oncology, biology, physics.

[13]  E. Yorke,et al.  Respiratory gating for liver tumors: Use in dose escalation , 2003 .

[14]  U. Haedinger,et al.  Stereotactic radiotherapy of primary liver cancer and hepatic metastases , 2006, Acta oncologica.

[15]  G. Lockwood,et al.  Phase I study of individualized stereotactic body radiotherapy of liver metastases. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  Morten Høyer,et al.  Three-dimensional, time-resolved, intrafraction motion monitoring throughout stereotactic liver radiation therapy on a conventional linear accelerator. , 2013, International journal of radiation oncology, biology, physics.

[17]  Jan-Jakob Sonke,et al.  Inter- and intrafraction variability in liver position in non-breath-hold stereotactic body radiotherapy. , 2009, International journal of radiation oncology, biology, physics.

[18]  Jin Sung Kim,et al.  Four-dimensional cone-beam computed tomography and digital tomosynthesis reconstructions using respiratory signals extracted from transcutaneously inserted metal markers for liver SBRT. , 2011, Medical physics.

[19]  F. Lohr,et al.  Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[20]  Peter C Levendag,et al.  Stereotactic body radiation therapy for primary and metastatic liver tumors: A single institution phase i-ii study , 2006, Acta oncologica.

[21]  J. Wong,et al.  The use of active breathing control (ABC) to reduce margin for breathing motion. , 1999, International journal of radiation oncology, biology, physics.

[22]  I. Suramo,et al.  Cranio-Caudal Movements of the Liver, Pancreas and Kidneys in Respiration , 1984, Acta radiologica: diagnosis.

[23]  R. T. Ten Haken,et al.  Phase II trial of high-dose conformal radiation therapy with concurrent hepatic artery floxuridine for unresectable intrahepatic malignancies. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  Demetri Psaltis,et al.  Recognitive Aspects of Moment Invariants , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Koichi Yamazaki,et al.  Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy. , 2003, International journal of radiation oncology, biology, physics.

[26]  I. Das,et al.  Evaluation of rotational errors in treatment setup of stereotactic body radiation therapy of liver cancer. , 2012, International journal of radiation oncology, biology, physics.

[27]  Albert Koong,et al.  Safety and efficacy of percutaneous fiducial marker implantation for image-guided radiation therapy. , 2009, Journal of vascular and interventional radiology : JVIR.

[28]  Yvette Seppenwoolde,et al.  Potentials and limitations of guiding liver stereotactic body radiation therapy set-up on liver-implanted fiducial markers. , 2010, International journal of radiation oncology, biology, physics.

[29]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.