Multifunctional quantum-dot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging.

[1]  B. Monk,et al.  Human papillomavirus type 18: association with poor prognosis in early stage cervical cancer. , 1997, Journal of the National Cancer Institute.

[2]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[3]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[4]  Michael T. McManus,et al.  Gene silencing in mammals by small interfering RNAs , 2002, Nature Reviews Genetics.

[5]  J. Milner,et al.  Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference , 2002, Oncogene.

[6]  K. Alexander,et al.  RNA Interference of Human Papillomavirus Type 18 E6 and E7 Induces Senescence in HeLa Cells , 2003, Journal of Virology.

[7]  瀬川 智也 Fragile histidine triad transcription abnormalities and human papillomavirus E6-E7 mRNA expression in the development of cervical carcinoma , 2003 .

[8]  A. Hengstermann,et al.  siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells , 2003, Oncogene.

[9]  Judy Lieberman,et al.  RNA interference targeting Fas protects mice from fulminant hepatitis , 2003, Nature Medicine.

[10]  S. Futaki,et al.  Membrane permeability commonly shared among arginine‐rich peptides , 2003, Journal of molecular recognition : JMR.

[11]  Phillip A. Sharp,et al.  The RNAi revolution , 2004, Nature.

[12]  Jong-sang Park,et al.  Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[13]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[14]  A. Reynolds,et al.  Rational siRNA design for RNA interference , 2004, Nature Biotechnology.

[15]  Thomas Tuschl,et al.  siRNAs: applications in functional genomics and potential as therapeutics , 2004, Nature Reviews Drug Discovery.

[16]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[17]  Anil K Sood,et al.  Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. , 2005, Cancer research.

[18]  F. Marshall,et al.  In vivo molecular and cellular imaging with quantum dots. , 2005, Current opinion in biotechnology.

[19]  P. Kruk,et al.  The genesis of RNA interference, its potential clinical applications, and implications in gynecologic cancer. , 2005, Gynecologic oncology.

[20]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[21]  A. Aigner,et al.  RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo , 2005, Gene Therapy.

[22]  T. Park,et al.  Comparative evaluation of target-specific GFP gene silencing efficiencies for antisense ODN, synthetic siRNA, and siRNA plasmid complexed with PEI-PEG-FOL conjugate. , 2006, Bioconjugate chemistry.

[23]  Theresa A. Storm,et al.  Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways , 2006, Nature.

[24]  Matthias John,et al.  RNAi-mediated gene silencing in non-human primates , 2006, Nature.

[25]  S. W. Kim,et al.  Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[26]  John J. Rossi,et al.  Strategies for silencing human disease using RNA interference , 2007, Nature Reviews Genetics.

[27]  T. Rana,et al.  Illuminating the silence: understanding the structure and function of small RNAs , 2007, Nature Reviews Molecular Cell Biology.

[28]  A. Seifalian,et al.  Biological applications of quantum dots. , 2007, Biomaterials.

[29]  Xiaohu Gao,et al.  Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. , 2008, ACS nano.

[30]  Tae Gwan Park,et al.  Self-crosslinked and reducible fusogenic peptides for intracellular delivery of siRNA. , 2008, Biopolymers.

[31]  J. Kjems,et al.  Delivery of siRNA from lyophilized polymeric surfaces. , 2008, Biomaterials.

[32]  Mark E. Davis,et al.  Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. , 2009, Advanced drug delivery reviews.

[33]  Mikiko C. Siomi,et al.  The Discovery of Rna Interference (rnai) Biogenesis of Small Rnas on the Road to Reading the Rna-interference Code Insight Review , 2022 .

[34]  P. Sharp,et al.  Functional Delivery of siRNA in Mice Using Dendriworms , 2009, ACS nano.

[35]  Y. Takakura Towards therapeutic application of RNA-mediated gene regulation. Preface. , 2009, Advanced drug delivery reviews.

[36]  Michael S. Goldberg,et al.  Claudin-3 gene silencing with siRNA suppresses ovarian tumor growth and metastasis , 2009, Proceedings of the National Academy of Sciences.

[37]  Liang-Nian Ji,et al.  Synthesis, biocompatibility and cell labeling of L-arginine-functional beta-cyclodextrin-modified quantum dot probes. , 2010, Biomaterials.

[38]  Min-young Lee,et al.  Target specific tumor treatment by VEGF siRNA complexed with reducible polyethyleneimine-hyaluronic acid conjugate. , 2010, Biomaterials.

[39]  Liang-Nian Ji,et al.  Targeted cellular uptake and siRNA silencing by quantum-dot nanoparticles coated with β-cyclodextrin coupled to amino acids. , 2011, Chemistry.