A View of Information-Estimation Relations in Gaussian Networks

Relations between estimation and information measures have received considerable attention from the information theory community. One of the most notable such relationships is the I-MMSE identity of Guo, Shamai and Verdu that connects the mutual information and the minimum mean square error (MMSE). This paper reviews several applications of the I-MMSE relationship to information theoretic problems arising in connection with multi-user channel coding. The goal of this paper is to review the different techniques used on such problems, as well as to emphasize the added-value obtained from the information-estimation point of view.

[1]  Shlomo Shamai,et al.  On MMSE properties and I-MMSE implications in parallel MIMO Gaussian channels , 2010, 2010 IEEE International Symposium on Information Theory.

[2]  Hua Wang,et al.  Gaussian Interference Channel Capacity to Within One Bit , 2007, IEEE Transactions on Information Theory.

[3]  Aydin Sezgin,et al.  Expanded GDoF-optimality Regime of Treating Interference as Noise in the $M\times 2$ X-Channel , 2017, IEEE Transactions on Information Theory.

[4]  Shlomo Shamai,et al.  Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error , 2010, IEEE Transactions on Information Theory.

[5]  Sergio Verdú,et al.  Derivative of Mutual Information at Zero SNR: The Gaussian-Noise Case , 2011, IEEE Transactions on Information Theory.

[6]  A. Sridharan Broadcast Channels , 2022 .

[7]  Shlomo Shamai,et al.  On the SNR-Evolution of the MMSE Function of Codes for the Gaussian Broadcast and Wiretap Channels , 2016, IEEE Transactions on Information Theory.

[8]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[9]  Hiroshi Sato,et al.  The capacity of the Gaussian interference channel under strong interference , 1981, IEEE Trans. Inf. Theory.

[10]  Daniela Tuninetti,et al.  On discrete alphabets for the two-user Gaussian interference channel with one receiver lacking knowledge of the interfering codebook , 2014, 2014 Information Theory and Applications Workshop (ITA).

[11]  Ayfer Özgür,et al.  Capacity of the Energy-Harvesting Channel With a Finite Battery , 2016, IEEE Transactions on Information Theory.

[12]  Tyrone E. Duncan Mutual Information for Stochastic Signals and Fractional Brownian Motion , 2008, IEEE Transactions on Information Theory.

[13]  Tsachy Weissman,et al.  Pointwise Relations Between Information and Estimation in Gaussian Noise , 2012, IEEE Transactions on Information Theory.

[14]  Shlomo Shamai,et al.  On MMSE properties of optimal codes for the Gaussian wiretap channel , 2015, 2015 IEEE Information Theory Workshop (ITW).

[15]  S. Shamai,et al.  On Extrinsic Information of Good Codes Operating Over Memoryless Channels with Incremental Noisiness , 2006, 2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel.

[16]  Shlomo Shamai,et al.  On MMSE Crossing Properties and Implications in Parallel Vector Gaussian Channels , 2013, IEEE Transactions on Information Theory.

[17]  Shlomo Shamai,et al.  Degraded broadcast channel: Secrecy outside of a bounded range , 2015, ITW.

[18]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[19]  Thomas M. Cover,et al.  Comments on Broadcast Channels , 1998, IEEE Trans. Inf. Theory.

[20]  Aaron D. Wyner,et al.  On the capacity of the Gaussian channel with a finite number of input levels , 1990, IEEE Trans. Inf. Theory.

[21]  Shlomo Shamai,et al.  The Interplay Between Information and Estimation Measures , 2013, Found. Trends Signal Process..

[22]  Kenneth Rose,et al.  On Conditions for Linearity of Optimal Estimation , 2010, IEEE Transactions on Information Theory.

[23]  H. Vincent Poor,et al.  Secrecy Capacity Region of a Multiple-Antenna Gaussian Broadcast Channel With Confidential Messages , 2007, IEEE Transactions on Information Theory.

[24]  Shlomo Shamai,et al.  On communications through a Gaussian noise channel with an MMSE disturbance constraint , 2016, 2016 Information Theory and Applications Workshop (ITA).

[25]  Gerhard Kramer,et al.  A New Outer Bound and the Noisy-Interference Sum–Rate Capacity for Gaussian Interference Channels , 2007, IEEE Transactions on Information Theory.

[26]  Max H. M. Costa,et al.  The capacity region of a class of deterministic interference channels , 1982, IEEE Trans. Inf. Theory.

[27]  Tsachy Weissman,et al.  Relations Between Information and Estimation in Discrete-Time Lévy Channels , 2014, IEEE Transactions on Information Theory.

[28]  Aydano B. Carleial,et al.  A case where interference does not reduce capacity (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[29]  Te Sun Han,et al.  A new achievable rate region for the interference channel , 1981, IEEE Trans. Inf. Theory.

[30]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[31]  Max H. M. Costa,et al.  The capacity region of the discrete memoryless interference channel with strong interference , 1987, IEEE Trans. Inf. Theory.

[32]  Shlomo Shamai,et al.  On MMSE properties of “good” and “bad” codes for the Gaussian broadcast channel , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[33]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[34]  Loren W. Nolte,et al.  Some geometric properties of the likelihood ratio (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[35]  Gal Chechik,et al.  Information Bottleneck for Gaussian Variables , 2003, J. Mach. Learn. Res..

[36]  Neri Merhav,et al.  Analysis of Mismatched Estimation Errors Using Gradients of Partition Functions , 2013, IEEE Transactions on Information Theory.

[37]  Shlomo Shamai,et al.  Proof of Entropy Power Inequalities Via MMSE , 2006, 2006 IEEE International Symposium on Information Theory.

[38]  Syed Ali Jafar,et al.  On the Capacity and Generalized Degrees of Freedom of the X Channel , 2008, ArXiv.

[39]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[40]  Kamyar Moshksar,et al.  An alternative to decoding interference or treating interference as Gaussian noise , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[41]  Mikael Skoglund,et al.  Communication and interference coordination , 2014, 2014 Information Theory and Applications Workshop (ITA).

[42]  Shlomo Shamai,et al.  Comment on the Equality Condition for the I-MMSE Proof of Entropy Power Inequality , 2017, ArXiv.

[43]  Shlomo Shamai,et al.  An MMSE Approach to the Secrecy Capacity of the MIMO Gaussian Wiretap Channel , 2009, 2009 IEEE International Symposium on Information Theory.

[44]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[45]  T. Kailath The innovations approach to detection and estimation theory , 1970 .

[46]  Tsachy Weissman,et al.  Mutual information, relative entropy, and estimation in the Poisson channel , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[47]  Shlomo Shamai,et al.  The effect of maximal rate codes on the interfering message rate , 2014, 2014 IEEE International Symposium on Information Theory.

[48]  G. David Forney,et al.  On the role of MMSE estimation in approaching the information-theoretic limits of linear Gaussian channels: Shannon meets Wiener , 2004, ArXiv.

[49]  Tyrone E. Duncan,et al.  Evaluation of Likelihood Functions , 1968, Inf. Control..

[50]  Sergio Verdú,et al.  Mismatched Estimation and Relative Entropy , 2009, IEEE Transactions on Information Theory.

[51]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[52]  Patrick P. Bergmans,et al.  A simple converse for broadcast channels with additive white Gaussian noise (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[53]  Daniela Tuninetti,et al.  Inner and Outer Bounds for the Gaussian Cognitive Interference Channel and New Capacity Results , 2010, IEEE Transactions on Information Theory.

[54]  Shlomo Shamai,et al.  A Note on the Secrecy Capacity of the Multiple-Antenna Wiretap Channel , 2007, IEEE Transactions on Information Theory.

[55]  Amir K. Khandani,et al.  Capacity bounds for the Gaussian Interference Channel , 2008, 2008 IEEE International Symposium on Information Theory.

[56]  Lizhong Zheng,et al.  A Coordinate System for Gaussian Networks , 2010, IEEE Transactions on Information Theory.

[57]  Daniela Tuninetti,et al.  Interference as Noise: Friend or Foe? , 2015, IEEE Transactions on Information Theory.

[58]  Tyrone E. Duncan Mutual Information for Stochastic Signals and LÉvy Processes , 2010, IEEE Transactions on Information Theory.

[59]  Sergio Verdu,et al.  MMSE Dimension , 2011, IEEE Trans. Inf. Theory.

[60]  Syed Ali Jafar,et al.  Interference Alignment and Degrees of Freedom of the $K$-User Interference Channel , 2008, IEEE Transactions on Information Theory.

[61]  Shlomo Shamai,et al.  A Vector Generalization of Costa's Entropy-Power Inequality With Applications , 2009, IEEE Transactions on Information Theory.

[62]  Dongning Guo,et al.  On information-Estimation relationships over binomial and negative binomial models , 2013, 2013 IEEE International Symposium on Information Theory.

[63]  Matthieu R. Bloch,et al.  Physical-Layer Security: From Information Theory to Security Engineering , 2011 .

[64]  R. Esposito,et al.  On a Relation between Detection and Estimation in Decision Theory , 1968, Inf. Control..

[65]  Tie Liu,et al.  An Extremal Inequality Motivated by Multiterminal Information-Theoretic Problems , 2006, IEEE Transactions on Information Theory.

[66]  Shlomo Shamai,et al.  MMSE of “Bad” Codes , 2013, IEEE Transactions on Information Theory.

[67]  Shlomo Shamai,et al.  On the equality condition for the I-MMSE proof of the entropy power inequality , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[68]  Shlomo Shamai,et al.  Upper and Lower Bounds on the Capacity of Amplitude-Constrained MIMO Channels , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[69]  Robert G. Gallager,et al.  Capacity and coding for degraded broadcast channels , 1974 .

[70]  Syed A. Jafar,et al.  Interference Alignment: A New Look at Signal Dimensions in a Communication Network , 2011, Found. Trends Commun. Inf. Theory.

[71]  Venugopal V. Veeravalli,et al.  Gaussian Interference Networks: Sum Capacity in the Low-Interference Regime and New Outer Bounds on the Capacity Region , 2008, IEEE Transactions on Information Theory.

[72]  Shlomo Shamai,et al.  Mutual information and minimum mean-square error in Gaussian channels , 2004, IEEE Transactions on Information Theory.

[73]  Sergio Verdú,et al.  Functional Properties of Minimum Mean-Square Error and Mutual Information , 2012, IEEE Transactions on Information Theory.

[74]  Sergio Verdú,et al.  On limiting characterizations of memoryless multiuser capacity regions , 1993, IEEE Trans. Inf. Theory.

[75]  Antonia Maria Tulino,et al.  Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof , 2006, IEEE Transactions on Information Theory.

[76]  Sergio Verdú,et al.  Optimal Phase Transitions in Compressed Sensing , 2011, IEEE Transactions on Information Theory.

[77]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[78]  Shlomo Shamai,et al.  Information Dimension and the Degrees of Freedom of the Interference Channel , 2015, IEEE Transactions on Information Theory.

[79]  Shlomo Shamai,et al.  An I-MMSE based graphical representation of rate and equivocation for the Gaussian broadcast channel , 2015, 2015 IEEE Conference on Communications and Network Security (CNS).

[80]  Matthieu R. Bloch,et al.  Wireless Information-Theoretic Security , 2008, IEEE Transactions on Information Theory.

[81]  Seymour Sherman,et al.  Non-mean-square error criteria , 1958, IRE Trans. Inf. Theory.

[82]  Moshe Zakai,et al.  On mutual information, likelihood ratios, and estimation error for the additive Gaussian channel , 2004, IEEE Transactions on Information Theory.

[83]  Dongning Guo,et al.  Relative entropy and score function: New information-estimation relationships through arbitrary additive perturbation , 2009, 2009 IEEE International Symposium on Information Theory.

[84]  Shlomo Shamai,et al.  A generalized Ozarow-Wyner capacity bound with applications , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[85]  Tobias Koch,et al.  High-SNR Asymptotics of Mutual Information for Discrete Constellations With Applications to BICM , 2014, IEEE Transactions on Information Theory.

[86]  Shlomo Shamai,et al.  Statistical Physics of Signal Estimation in Gaussian Noise: Theory and Examples of Phase Transitions , 2008, IEEE Transactions on Information Theory.

[87]  Chandra Nair,et al.  Sub-optimality of Han-Kobayashi achievable region for interference channels , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[88]  Shlomo Shamai,et al.  Additive non-Gaussian noise channels: mutual information and conditional mean estimation , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[89]  Jacob Ziv,et al.  Mutual information of the white Gaussian channel with and without feedback , 1971, IEEE Trans. Inf. Theory.

[90]  Shlomo Shamai,et al.  On additive channels with generalized Gaussian noise , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[91]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[92]  Daniela Tuninetti,et al.  On the Two-User Interference Channel With Lack of Knowledge of the Interference Codebook at One Receiver , 2015, IEEE Transactions on Information Theory.

[93]  Shlomo Shamai,et al.  On the applications of the minimum mean p-th error (MMPE) to information theoretic quantities , 2016, 2016 IEEE Information Theory Workshop (ITW).

[94]  It's Easier to Approximate , 2010 .

[95]  Abbas El Gamal,et al.  Communication With Disturbance Constraints , 2014, IEEE Transactions on Information Theory.

[96]  Daniel Pérez Palomar,et al.  Gradient of mutual information in linear vector Gaussian channels , 2006, IEEE Transactions on Information Theory.

[97]  S. Verdú,et al.  The impact of constellation cardinality on Gaussian channel capacity , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[98]  Haim H. Permuter,et al.  Directed Information, Causal Estimation, and Communication in Continuous Time , 2009, IEEE Transactions on Information Theory.

[99]  Ayfer Özgür,et al.  Near Optimal Energy Control and Approximate Capacity of Energy Harvesting Communication , 2014, IEEE Journal on Selected Areas in Communications.

[100]  Sergio Verdú,et al.  A simple proof of the entropy-power inequality , 2006, IEEE Transactions on Information Theory.

[101]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[102]  Emre Telatar,et al.  Bounds on the capacity region of a class of interference channels , 2007, 2007 IEEE International Symposium on Information Theory.

[103]  T. Duncan ON THE CALCULATION OF MUTUAL INFORMATION , 1970 .

[104]  Miguel R. D. Rodrigues,et al.  MIMO Gaussian Channels With Arbitrary Inputs: Optimal Precoding and Power Allocation , 2010, IEEE Transactions on Information Theory.

[105]  Jian Song,et al.  Extensions of the I-MMSE Relationship to Gaussian Channels With Feedback and Memory , 2014, IEEE Transactions on Information Theory.

[106]  Rudolf Ahlswede,et al.  Multi-way communication channels , 1973 .

[107]  A. Robert Calderbank,et al.  Soft-Decoding-Based Strategies for Relay and Interference Channels: Analysis and Achievable Rates Using LDPC Codes , 2010, IEEE Transactions on Information Theory.

[108]  Shlomo Shamai,et al.  Mutual Information and Conditional Mean Estimation in Poisson Channels , 2004, IEEE Transactions on Information Theory.

[109]  David Tse,et al.  The two-user Gaussian interference channel: a deterministic view , 2008, Eur. Trans. Telecommun..