Hybrid control of Hopf bifurcation in complex networks with delays

In this paper, the problem of Hopf bifurcation control for a complex network model with time delays is considered by using a new hybrid control strategy, in which state feedback and parameter perturbation are used. To control the Hopf bifurcation, a hybrid control strategy is proposed and the onset of an inherent bifurcation is delayed (advanced) when such a bifurcation is undesired (desired). Furthermore, the dynamic behaviors of the controlled system can also be changed by choosing appropriate control parameters. Numerical simulation results confirm that the new control strategy is efficient in controlling Hopf bifurcation.

[1]  Guanrong Chen,et al.  Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems , 2003 .

[2]  Zhen Chen,et al.  Hopf bifurcation Control for an Internet Congestion Model , 2005, Int. J. Bifurc. Chaos.

[3]  Guanrong Chen,et al.  Feedback Control of Limit Cycle Amplitudes from A Frequency Domain Approach , 1998, Autom..

[4]  Xiang Li,et al.  Stability and bifurcation of disease spreading in complex networks , 2004, Int. J. Syst. Sci..

[5]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[6]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[7]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[8]  Xiao Fan Wang,et al.  Complex Networks: Topology, Dynamics and Synchronization , 2002, Int. J. Bifurc. Chaos.

[9]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[10]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[11]  X. Yang,et al.  Chaos in small-world networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  K. W. Chung,et al.  Hybrid Control of bifurcation in Continuous Nonlinear Dynamical Systems , 2005, Int. J. Bifurc. Chaos.

[13]  Guanrong Chen,et al.  Bifurcation Control: Theories, Methods, and Applications , 2000, Int. J. Bifurc. Chaos.

[14]  Ian A. Hiskens,et al.  Robust, adaptive or nonlinear control for modern power systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[15]  J. Hale Theory of Functional Differential Equations , 1977 .

[16]  Guanrong Chen,et al.  Hopf bifurcation in an Internet congestion control model , 2004 .

[17]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[18]  M. Newman,et al.  Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.

[19]  Joshua E. S. Socolar,et al.  Stability of periodic orbits controlled by time-delay feedback , 1995, chao-dyn/9510019.

[20]  T. S. Evans,et al.  Complex networks , 2004 .

[21]  Guanrong Chen,et al.  Complexity and synchronization of the World trade Web , 2003 .