Orbital angular momentum-encoded measurement device independent quantum key distribution under atmospheric turbulence

In this paper, an orbital angular momentum (OAM)-encoded measurement device independent quantum key distribution (MDI-QKD) under atmospheric turbulence is analyzed. The turbulent effect on scattering the OAM states is quantified by the probability of receiving the initial OAM modes, in conjunction with Kolmogorov and non-Kolmogorov models. The key rates of the OAM-encoded MDI-QKD are obtained under various turbulent intensity. Simulation results show that with the increase in radial coordinate, the initial OAM states are gradually diverted to adjacent modes and eventually tend to be randomly distributed. Furthermore, the OAM-encoded MDI-QKD has a slightly longer maximum transmission distance than that of the polarization-encoded MDI-QKD.

[1]  Liuguo Yin,et al.  Measurement-device-independent quantum communication without encryption. , 2018, Science bulletin.

[2]  T. F. D. Silva,et al.  Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits , 2012, 1207.6345.

[3]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[4]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[5]  Gui-Lu Long,et al.  Measurement-device-independent quantum secure direct communication , 2018, Science China Physics, Mechanics & Astronomy.

[6]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[7]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[8]  Le Wang,et al.  Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum* , 2015 .

[9]  Chun-Yan Li,et al.  Practical decoy-state measurement-device-independent quantum key distribution , 2013, 1305.7396.

[10]  James F. Dynes,et al.  Avoiding the blinding attack in QKD , 2010 .

[11]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[12]  Li Qian,et al.  Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. , 2013, Physical review letters.

[13]  Ya Cheng,et al.  Chemo-mechanical polish lithography: A pathway to low loss large-scale photonic integration on lithium niobate on insulator , 2019, Quantum Eng..

[14]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[15]  Liuguo Yin,et al.  Implementation and security analysis of practical quantum secure direct communication , 2018, Light: Science & Applications.

[16]  Xiongfeng Ma,et al.  QUANTUM CRYPTOGRAPHY: FROM THEORY TO PRACTICE , 2007, quant-ph/0702202.

[17]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[18]  G. Vallone,et al.  Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels , 2014, 1404.1272.

[19]  Andrew Forbes,et al.  Experimental orbital angular momentum based quantum key distribution through turbulence , 2014, 1412.0788.

[20]  Rui He,et al.  Geometric transformations of optical orbital angular momentum spatial modes , 2018 .

[21]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[22]  G. Vallone,et al.  Impact of turbulence in long range quantum and classical communications. , 2012, Physical Review Letters.

[23]  Alexander Ling,et al.  Progress in satellite quantum key distribution , 2017, 1707.03613.

[24]  Jian-Wei Pan,et al.  Quantum teleportation and entanglement distribution over 100-kilometre free-space channels , 2012, Nature.

[25]  ALFRED W. BENNETT The Theory of Natural Selection from a Mathematical Point of View , 1870, Nature.

[26]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[27]  Jian-Wei Pan,et al.  Measurement-device-independent quantum key distribution over 200 km. , 2014, Physical review letters.

[28]  R. Boyd,et al.  Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. , 2009, Optics letters.

[29]  Wanyi Gu,et al.  Continuous-variable measurement-device-independent quantum key distribution using squeezed states , 2014, 1406.0973.

[30]  Xiongfeng Ma,et al.  Statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012, 1210.3929.