A SIEVE M-THEOREM FOR BUNDLED PARAMETERS IN SEMIPARAMETRIC MODELS, WITH APPLICATION TO THE EFFICIENT ESTIMATION IN A LINEAR MODEL FOR CENSORED DATA.

In many semiparametric models that are parameterized by two types of parameters - a Euclidean parameter of interest and an infinite-dimensional nuisance parameter, the two parameters are bundled together, i.e., the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the unspecified error distribution function involves the regression coefficients. Motivated by developing an efficient estimating method for the regression parameters, we propose a general sieve M-theorem for bundled parameters and apply the theorem to deriving the asymptotic theory for the sieve maximum likelihood estimation in the linear regression model for censored survival data. The numerical implementation of the proposed estimating method can be achieved through the conventional gradient-based search algorithms such as the Newton-Raphson algorithm. We show that the proposed estimator is consistent and asymptotically normal and achieves the semiparametric efficiency bound. Simulation studies demonstrate that the proposed method performs well in practical settings and yields more efficient estimates than existing estimating equation based methods. Illustration with a real data example is also provided.

[1]  Jon A. Wellner,et al.  TWO LIKELIHOOD-BASED SEMIPARAMETRIC ESTIMATION METHODS FOR PANEL COUNT DATA WITH COVARIATES , 2005, math/0509132.

[2]  D. Cox Regression Models and Life-Tables , 1972 .

[3]  Rupert G. Miller,et al.  Regression with censored data , 1982 .

[4]  Zhiliang Ying,et al.  Large Sample Theory of a Modified Buckley-James Estimator for Regression Analysis with Censored Data , 1991 .

[5]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[6]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[7]  Z. Ying,et al.  On least-squares regression with censored data , 2006 .

[8]  D.,et al.  Regression Models and Life-Tables , 2022 .

[9]  Z. Ying,et al.  Rank-based inference for the accelerated failure time model , 2003 .

[10]  G. Chamberlain Asymptotic efficiency in estimation with conditional moment restrictions , 1987 .

[11]  Ying Ding,et al.  Some new insights about the accelerated failure time model , 2010 .

[12]  Xiaohong Chen,et al.  Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions , 2003 .

[13]  A. Tsiatis Estimating Regression Parameters Using Linear Rank Tests for Censored Data , 1990 .

[14]  O. Borgan The Statistical Analysis of Failure Time Data (2nd Ed.). John D. Kalbfleisch and Ross L. Prentice , 2003 .

[15]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[16]  Xuming He,et al.  Sieve maximum likelihood estimation for doubly semiparametric zero-inflated Poisson models , 2010, J. Multivar. Anal..

[17]  Xiaohong Chen,et al.  Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .

[18]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[19]  Donglin Zeng,et al.  Efficient Estimation for the Accelerated Failure Time Model , 2007 .

[20]  R. Prentice Linear rank tests with right censored data , 1978 .

[21]  Zhiliang Ying,et al.  A Large Sample Study of Rank Estimation for Censored Regression Data , 1993 .

[22]  I. James,et al.  Linear regression with censored data , 1979 .

[23]  Jian Huang,et al.  A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data , 2010 .

[24]  Jian Huang,et al.  Interval Censored Survival Data: A Review of Recent Progress , 1997 .

[25]  Laurence L. George,et al.  The Statistical Analysis of Failure Time Data , 2003, Technometrics.

[26]  Q. Shao,et al.  On Parameters of Increasing Dimensions , 2000 .

[27]  Xiaotong Shen,et al.  On methods of sieves and penalization , 1997 .

[28]  Ya'acov Ritov,et al.  Estimation in a Linear Regression Model with Censored Data , 1990 .

[29]  Xiaohong Chen Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models , 2007 .

[30]  Jian Huang Efficient estimation of the partly linear additive Cox model , 1999 .

[31]  Zhiliang Ying,et al.  Linear regression analysis of censored survival data based on rank tests , 1990 .

[32]  Jian Huang,et al.  Efficient estimation for the proportional hazards model with interval censoring , 1996 .

[33]  W. Wong,et al.  Convergence Rate of Sieve Estimates , 1994 .

[34]  J. Kalbfleisch,et al.  Asymptotic theory for the semiparametric accelerated failure time model with missing data , 2009, 0908.3135.