Ten applications of graph theory

0. Introduction.- 1. Flows and tensions on networks.- 1.1. Basic concepts.- 1.2. Properties of flows and tensions.- 1.3. The maximum flow problem.- 1.3.1. Introduction.- 1.3.2. The theorem of Ford and Fulkerson.- 1.3.3. Generalized theorem of Ford and Fulkerson.- 1.3.4. The multi-terminal problem.- 1.4. The maximum tension problem.- 1.4.1. The existence theorem for a tension.- 1.4.2. The problems of the shortest and the longest paths as potential problems.- 1.4.3. Algorithm for determining a shortest simple path.- 1.5. The conception of network analysis.- 1.6. Bibliography.- 2. The linear transportation problem.- 2.1. Formulation of the problem.- 2.2. The solution according to Busacker and Gowen.- 2.3. The solution according to Klein.- 2.4. Proof of minimality.- 2.5. Conclusions.- 2.6. Bibliography.- 3. The cascade algorithm.- 3.1. Formulation of the problem.- 3.2. The standard method.- 3.3. The revised matrix algorithm.- 3.4. The cascade algorithm.- 3.5. Bibliography.- 4. Nonlinear transportation problems.- 4.1. Formulation of the problem.- 4.2. A convex transportation problem.- 4.3. A multi-flow problem.- 4.4. Bibliography.- 5. Communication and supply networks.- 5.1. Formulation of the problem.- 5.2. Networks without Steiner's points.- 5.3. Networks containing Steiner's points.- 5.4. Influence exerted by the cost function on the structure of the optimal network.- 5.5. Bibliography.- 6. The assignment and the travelling salesman problems.- 6.1. The assignment problem.- 6.1.1. Formulation of the problem.- 6.1.2. A solution algorithm for the assignment problem.- 6.2. The travelling salesman problem.- 6.2.1. Formulation of the problem.- 6.2.2. A branch-and-bound solution algorithm for the travelling salesman problem.- 6.2.3. A heuristic method for solving the travelling salesman problem.- 6.3. Final observations.- 6.4. Bibliography.- 7. Coding and decision graphs.- 7.1. Formulation of the problem.- 7.2. Algorithm for the generation of a cycle-free questionnaire.- 7.3. Optimal questionnaires.- 7.4. An example from coding.- 7.5. Bibliography.- 8. Signal flow graphs.- 8.1. Formulation of the problem.- 8.2. The algorithm of Mason for solving linear systems of equations.- 8.3. Bibliography.- 9. Minimum sets of feedback arcs.- 9.1. Formulation of the problem.- 9.2. The algorithm of Lempel and Cederbaum.- 9.3. The idea of Younger.- 9.4. Bibliography.- 10. Embedding of planar graphs in the plane.- 10.1. Formulation of the problem.- 10.2. Theorems of Kuratowski, MacLane and Whitney.- 10.3. The planarity algorithm of Dambitis.- 10.4. Planarity studies made by decomposing graphs.- 10.5. The embedding algorithm of Demoucron, Malgrange and Pertuiset.- 10.6. The planarity algorithm of Tutte.- 10.7. Bibliography.- Algorithms.- Author Index.