Using Interaction Data to Explain Difficulty Navigating Online

A user's behaviour when browsing a Web site contains clues to that user's experience. It is possible to record some of these behaviours automatically, and extract signals that indicate a user is having trouble finding information. This allows for Web site analytics based on user experiences, not just page impressions. A series of experiments identified user browsing behaviours—such as time taken and amount of scrolling up a page—which predict navigation difficulty and which can be recorded with minimal or no changes to existing sites or browsers. In turn, patterns of page views correlate with these signals and these patterns can help Web authors understand where and why their sites are hard to navigate. A new software tool, “LATTE,” automates this analysis and makes it available to Web authors in the context of the site itself.

[1]  Paul Thomas Explaining difficulty navigating a website using page view data , 2012, ADCS.

[2]  Bonnie E. John,et al.  CogTool-Explorer: a model of goal-directed user exploration that considers information layout , 2012, CHI.

[3]  Nicholas J. Belkin,et al.  Display time as implicit feedback: understanding task effects , 2004, SIGIR '04.

[4]  Daqing He,et al.  Detecting session boundaries from Web user logs , 2000 .

[5]  Steve Fox,et al.  Evaluating implicit measures to improve web search , 2005, TOIS.

[6]  Jacek Gwizdka,et al.  What Can Searching Behavior Tell Us About the Difficulty of Information Tasks? A Study of Web Navigation , 2007, ASIST.

[7]  D. Gilbert,et al.  Barriers and benefits in the adoption of e‐government , 2004 .

[8]  Myra Spiliopoulou,et al.  Improving the Effectiveness of a Web Site with Web Usage Mining , 1999, WEBKDD.

[9]  Jacek Gwizdka,et al.  Can search systems detect users' task difficulty?: some behavioral signals , 2010, SIGIR '10.

[10]  Hiroki Kato,et al.  Discovering the gap between Web site designers' expectations and users' behavior , 2000, Comput. Networks.

[11]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[12]  Filip Radlinski,et al.  Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search , 2007, TOIS.

[13]  Jacek Gwizdka,et al.  Helping identify when users find useful documents: examination of query reformulation intervals , 2010, IIiX.

[14]  Roy T. Fielding,et al.  Hypertext Transfer Protocol - HTTP/1.1 , 1997, RFC.

[15]  Albrecht Schmidt,et al.  Knowing the User's Every Move – User Activity Tracking for Website Usability Evaluation and Implicit Interaction , 2006 .

[16]  Wai-Tat Fu,et al.  SNIF-ACT: A Cognitive Model of User Navigation on the World Wide Web , 2007, Hum. Comput. Interact..

[17]  Maguelonne Teisseire,et al.  Using data mining techniques on Web access logs to dynamically improve hypertext structure , 1999, LINK.

[18]  Pauline A. Smith Towards a Practical Measure of Hypertext Usability , 1996, Interact. Comput..

[19]  Eelco Herder Revisitation Patterns and Disorientation , 2003 .

[20]  Eugene Agichtein,et al.  Mining touch interaction data on mobile devices to predict web search result relevance , 2013, SIGIR.

[21]  Bernard J. Jansen,et al.  Understanding User-Web Interactions via Web Analytics , 2009, Understanding User-Web Interactions via Web Analytics.

[22]  Jane Webster,et al.  Perceived disorientation: an examination of a new measure to assess web design effectiveness , 2001, Interact. Comput..

[23]  Fabrizio Silvestri,et al.  Mining Query Logs: Turning Search Usage Data into Knowledge , 2010, Found. Trends Inf. Retr..

[24]  Padhraic Smyth,et al.  Model-Based Clustering and Visualization of Navigation Patterns on a Web Site , 2003, Data Mining and Knowledge Discovery.

[25]  Julie Chen,et al.  The bloodhound project: automating discovery of web usability issues using the InfoScentπ simulator , 2003, CHI '03.

[26]  Yuming Zhou,et al.  MNav: A Markov Model-Based Web Site Navigability Measure , 2007, IEEE Transactions on Software Engineering.

[27]  Mike Thelwall,et al.  Synthesis Lectures on Information Concepts, Retrieval, and Services , 2009 .

[28]  M. Peruggia Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.) , 2003 .

[29]  Udo Konradt,et al.  Reliability, validity, and sensitivity of a single-item measure of online store usability , 2011, Int. J. Hum. Comput. Stud..

[30]  Cecile Paris,et al.  Interaction differences in web search and browse logs , 2010, ADCS 2010.

[31]  Muhammad Shakaib Akram,et al.  Evaluating citizens' readiness to embrace e-government services , 2012, dg.o '12.

[32]  Rosie Jones,et al.  Beyond the session timeout: automatic hierarchical segmentation of search topics in query logs , 2008, CIKM '08.

[33]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[34]  Alistair Moffat,et al.  Fading Away: Dilution and User Behaviour , 2013, EuroHCIR.

[35]  Scott P. Robertson,et al.  Proceedings of the SIGCHI Conference on Human Factors in Computing Systems , 1991 .

[36]  Mounia Lalmas,et al.  Models of user engagement , 2012, UMAP.

[37]  Fabrizio Silvestri,et al.  Discovering tasks from search engine query logs , 2013, TOIS.

[38]  H. Akaike A new look at the statistical model identification , 1974 .

[39]  D DavisFred Perceived usefulness, perceived ease of use, and user acceptance of information technology , 1989 .

[40]  Jacek Gwizdka,et al.  Implicit measures of lostness and success in web navigation , 2007, Interact. Comput..

[41]  Padhraic Smyth,et al.  Visualization of navigation patterns on a Web site using model-based clustering , 2000, KDD '00.

[42]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[43]  Maureen Dostert,et al.  Does domain knowledge influence search stopping behavior? , 2011, ASIST.

[44]  Mark Claypool,et al.  Implicit interest indicators , 2001, IUI '01.

[45]  Louis Rosenfeld Search Analytics for Your Site: Conversations with Your Customers , 2011 .

[46]  Ben Shneiderman,et al.  Structural analysis of hypertexts: identifying hierarchies and useful metrics , 1992, TOIS.

[47]  Nicholas J. Belkin,et al.  Exploring and predicting search task difficulty , 2012, CIKM '12.

[48]  J. Concato,et al.  A simulation study of the number of events per variable in logistic regression analysis. , 1996, Journal of clinical epidemiology.

[49]  Nizar R. Mabroukeh,et al.  A taxonomy of sequential pattern mining algorithms , 2010, CSUR.

[50]  Melody Y. Ivory,et al.  Automated web site evaluation - researchers and practitioners perspectives , 2010, Human-computer interaction series.

[51]  Mark Levene,et al.  Data Mining of User Navigation Patterns , 1999, WEBKDD.

[52]  Thorsten Joachims,et al.  Accurately interpreting clickthrough data as implicit feedback , 2005, SIGIR '05.

[53]  Anne Aula,et al.  How does search behavior change as search becomes more difficult? , 2010, CHI.

[54]  James Allan,et al.  Predicting searcher frustration , 2010, SIGIR.

[55]  Silvia Mara Abrahão,et al.  Usability evaluation methods for the web: A systematic mapping study , 2011, Inf. Softw. Technol..

[56]  Robert Cooley,et al.  The use of web structure and content to identify subjectively interesting web usage patterns , 2003, TOIT.

[57]  Catherine L. Smith,et al.  User adaptation: good results from poor systems , 2008, SIGIR '08.

[58]  Eric Brill,et al.  Improving web search ranking by incorporating user behavior information , 2006, SIGIR.

[59]  Jaime Arguello,et al.  Grannies, tanning beds, tattoos and NASCAR: evaluation of search tasks with varying levels of cognitive complexity , 2012, IIiX.

[60]  Ed H. Chi,et al.  Using information scent to model user information needs and actions and the Web , 2001, CHI.