Saturation Probabilities of Continuous-Time Sigmoidal Networks

From genetic regulatory networks to nervous systems, the interactions between elements in biological networks often take a sigmoidal or S-shaped form. This paper develops a probabilistic characterization of the parameter space of continuous-time sigmoidal networks (CTSNs), a simple but dynamically-universal model of such interactions. We describe an efficient and accurate method for calculating the probability of observing effectively M-dimensional dynamics in an N-element CTSN, as well as a closed-form but approximate method. We then study the dependence of this probability on N, M, and the parameter ranges over which sampling occurs. This analysis provides insight into the overall structure of CTSN parameter space.

[1]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[2]  John S. Conery,et al.  A Neural Network Model of Chemotaxis Predicts Functions of Synaptic Connections in the Nematode Caenorhabditis elegans , 2004, Journal of Computational Neuroscience.

[3]  Eduardo D. Sontag,et al.  Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks , 2007, PLoS Comput. Biol..

[4]  J. Uspensky Introduction to mathematical probability , 1938 .

[5]  D. A. Baxter,et al.  Modeling transcriptional control in gene networks—methods, recent results, and future directions , 2000, Bulletin of mathematical biology.

[6]  Muffy Calder,et al.  When kinases meet mathematics: the systems biology of MAPK signalling , 2005, FEBS letters.

[7]  Randall D. Beer,et al.  Parameter Space Structure of Continuous-Time Recurrent Neural Networks , 2006, Neural Computation.

[8]  Upinder S Bhalla,et al.  Understanding complex signaling networks through models and metaphors. , 2003, Progress in biophysics and molecular biology.

[9]  Susan L. Wearne,et al.  Neuronal Firing Sensitivity to Morphologic and Active Membrane Parameters , 2007, PLoS Comput. Biol..

[10]  David H. Sharp,et al.  A connectionist model of development. , 1991, Journal of theoretical biology.

[11]  D. Bray,et al.  Intracellular signalling as a parallel distributed process. , 1990, Journal of theoretical biology.

[12]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[13]  L. Glass Combinatorial and topological methods in nonlinear chemical kinetics , 1975 .

[14]  W. R. Foster,et al.  Significance of conductances in Hodgkin-Huxley models. , 1993, Journal of neurophysiology.

[15]  E. Marder,et al.  Failure of averaging in the construction of a conductance-based neuron model. , 2002, Journal of neurophysiology.

[16]  S. Schuster,et al.  Metabolic network structure determines key aspects of functionality and regulation , 2002, Nature.

[17]  Naren Ramakrishnan,et al.  Memory Switches in Chemical Reaction Space , 2008, PLoS Comput. Biol..

[18]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[19]  Masahiro Kimura,et al.  Learning dynamical systems by recurrent neural networks from orbits , 1998, Neural Networks.

[20]  Erik De Schutter,et al.  Complex Parameter Landscape for a Complex Neuron Model , 2006, PLoS Comput. Biol..

[21]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[22]  R. Edwards Analysis of continuous-time switching networks , 2000 .

[23]  Randall D. Beer,et al.  On the Dynamics of Small Continuous-Time Recurrent Neural Networks , 1995, Adapt. Behav..

[24]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[25]  E. Marder,et al.  Global Structure, Robustness, and Modulation of Neuronal Models , 2001, The Journal of Neuroscience.

[26]  Tommy W. S. Chow,et al.  Modeling of continuous time dynamical systems with input by recurrent neural networks , 2000 .

[27]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[28]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[29]  Andre Levchenko,et al.  Dynamic Properties of Network Motifs Contribute to Biological Network Organization , 2005, PLoS biology.

[30]  D. Bray Protein molecules as computational elements in living cells , 1995, Nature.

[31]  C. S. Holling,et al.  Qualitative Analysis of Insect Outbreak Systems: The Spruce Budworm and Forest , 1978 .

[32]  S. Strogatz Exploring complex networks , 2001, Nature.

[33]  P. Das,et al.  Two neuron dynamics and adiabatic elimination , 1993 .

[34]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[35]  Yuichi Nakamura,et al.  Approximation of dynamical systems by continuous time recurrent neural networks , 1993, Neural Networks.

[36]  Stephen Wolfram,et al.  The Mathematica book, 5th Edition , 2003 .