Modelling of the Linewidth Enhancement Factor with the Use of Radial Basis Function Network

Summary A different method based on the use of radial basis function network for modelling the linewidth enhancement factor of laser diodes is presented. The learning is achieved using a clustering algorithmfor determining the cluster centres and the extended delta-bar-delta algorithm. The linewidth enhancement factor results presented in this article arein very good agreement with the experimental findings reported elsewhere.

[1]  D. T. Pham,et al.  Three methods of training multi-layer perceptrons to model a robot sensor , 1995, Robotica.

[2]  Shun Lien Chuang,et al.  Amplified spontaneous emission spectroscopy in strained quantum-well lasers , 1995 .

[3]  Michael J. Adams,et al.  Explicit approximations for the linewidth-enhancement factor in quantum-well lasers , 1988 .

[4]  M. Osiński,et al.  Linewidth broadening factor in semiconductor lasers--An overview , 1987 .

[5]  Robert M. Pap,et al.  Handbook of neural computing applications , 1990 .

[6]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[7]  Robert A. Jacobs,et al.  Increased rates of convergence through learning rate adaptation , 1987, Neural Networks.

[8]  P. Unger,et al.  Gain, refractive index, linewidth enhancement factor from spontaneous emission of strained GaInP quantum-well lasers , 1995 .

[9]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[10]  Charles Howard Henry,et al.  Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers , 1981 .

[11]  L. F. Tiemeijer,et al.  Effect of free carriers on the linewidth enhancement factor of InGaAs/InP (strained‐layer) multiple quantum well lasers , 1992 .

[12]  Ian H. White,et al.  Measurement of the static and dynamic linewidth enhancement factor in strained 1.55 µm InGaAsP lasers , 1994 .

[13]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.