Locally E-optimal designs for expo-nential regression models

In this paper we investigate locally E- and c-optimal designs for exponential regression models of the form _k i=1 ai exp(??ix). We establish a numerical method for the construction of efficient and locally optimal designs, which is based on two results. First we consider the limit ?i ? ? and show that the optimal designs converge weakly to the optimal designs in a heteroscedastic polynomial regression model. It is then demonstrated that in this model the optimal designs can be easily determined by standard numerical software. Secondly, it is proved that the support points and weights of the locally optimal designs in the exponential regression model are analytic functions of the nonlinear parameters ?1, . . . , ?k. This result is used for the numerical calculation of the locally E-optimal designs by means of a Taylor expansion for any vector (?1, . . . , ?k). It is also demonstrated that in the models under consideration E-optimal designs are usually more efficient for estimating individual parameters than D-optimal designs.

[1]  B. Heiligers E-OPTIMAL DESIGNS IN WEIGHTED POLYNOMIAL REGRESSION , 1994 .

[2]  Al Young Providence, Rhode Island , 1975 .

[3]  J. Kiefer General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .

[4]  Leon Shargel,et al.  Applied biopharmaceutics and pharmacokinetics , 1980 .

[5]  John R. Rice,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics (Samuel Karlin and William J. Studden) , 1967 .

[6]  V. Melas Analytical Theory of E-optimal Designs for Polynomial Regression , 2000 .

[7]  V. B. Melas,et al.  Design and Analysis of Simulation Experiments , 1995 .

[8]  David A. Ratkowsky,et al.  Handbook of nonlinear regression models , 1990 .

[9]  W. J. Studden,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .

[10]  W. J. Studden,et al.  Remez's Procedure for Finding Optimal Designs , 1976 .

[11]  Linda M. Haines,et al.  A Geometric Approach to Optimal Design for One‐Parameter Non‐Linear Models , 1995 .

[12]  P O Droz,et al.  Biological monitoring of tetrahydrofuran: contribution of a physiologically based pharmacokinetic model. , 1999, American Industrial Hygiene Association journal.

[13]  W. J. Studden,et al.  Geometry of E-Optimality , 1993 .

[14]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[15]  荒井保明 Pharmacokinetics , 1993 .

[16]  V. Melas,et al.  Optimal designs for estimating individual coefficients in polynomial regression: a functional approach , 2001 .

[17]  Lorens A. Imhof,et al.  E-optimal designs for rational models , 1996 .

[18]  J J DiStefano,et al.  Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. , 1984, The American journal of physiology.

[19]  E. Walter,et al.  Robust experiment design via stochastic approximation , 1985 .

[20]  C. F. Wu,et al.  Efficient Sequential Designs with Binary Data , 1985 .

[21]  Friedrich Pukelsheim,et al.  Optimal weights for experimental designs on linearly independent support points , 1991 .

[22]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[23]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[24]  F. Pukelsheim,et al.  Efficient rounding of approximate designs , 1992 .

[25]  L. Imhof,et al.  Optimal designs for rational models and weighted polynomial regression , 1999 .

[26]  William G. Bardsley,et al.  The F test for model discrimination with exponential functions , 1986 .

[27]  K. Chaloner,et al.  Optimal Bayesian design applied to logistic regression experiments , 1989 .

[28]  Kathryn Chaloner,et al.  D- and c-optimal designs for exponential regression models used in viral dynamics and other applications , 2003 .

[29]  Holger Dette,et al.  E-optimal designs for the Michaelis–Menten model , 1999 .

[30]  Michael Becka,et al.  Statistical aspects of inhalation toxicokinetics , 1996, Environmental and Ecological Statistics.

[31]  I. Ford,et al.  The Use of a Canonical Form in the Construction of Locally Optimal Designs for Non‐Linear Problems , 1992 .

[32]  H. Chernoff Locally Optimal Designs for Estimating Parameters , 1953 .

[33]  F. R. Gantmakher The Theory of Matrices , 1984 .

[34]  B. Jones,et al.  Constructing optimal designs for fitting pharmacokinetic models , 1999, Stat. Comput..

[35]  Holger Dette,et al.  E-optimal designs for linear and nonlinear models with two parameters , 1994 .

[36]  V. Melas Analytical Properties of Locally D -optimal Designs for Rational Models , 2001 .

[37]  S. Silvey,et al.  A sequentially constructed design for estimating a nonlinear parametric function , 1980 .

[38]  Holger Dette,et al.  Optimal designs for a class of nonlinear regression models , 2002 .

[39]  H. Bolt,et al.  Statistical analysis of toxicokinetic data by nonlinear regression (example: inhalation pharmacokinetics of propylene) , 2005, Archives of Toxicology.

[40]  H. Bolt,et al.  Statistical evaluation of toxicokinetic data , 1993 .

[41]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[42]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[43]  David A. Ratkowsky,et al.  Nonlinear regression modeling : a unified practical approach , 1984 .

[44]  Viatcheslav B. Melas Optimal designs for exponential regression , 1978 .

[45]  Robert E. Shannon,et al.  Design and analysis of simulation experiments , 1978, WSC '78.

[46]  Hulin Wu,et al.  A Comparison Study of Models and Fitting Procedures for Biphasic Viral Dynamics in HIV‐1 Infected Patients Treated with Antiviral Therapies , 2000, Biometrics.

[47]  Javier Raso,et al.  Comparing predicting models for the Escherichia coli inactivation by pulsed electric fields , 2003 .