( t, m, s )-Nets and Maximized Minimum Distance

Many experiments in computer graphics imply that the average quality of quasi-Monte Carlo integro-approximation is improved as the minimal distance of the point set grows. While the definition of (t, m, s)-nets in base b guarantees extensive stratification properties, which are best for t = 0, sampling points can still lie arbitrarily close together. We remove this degree of freedom, report results of two computer searches for (0, m, 2)-nets in base 2 with maximized minimum distance, and present an inferred construction for general m. The findings are especially useful in computer graphics and, unexpectedly, some (0, m, 2)-nets with the best minimum distance properties cannot be generated in the classical way using generator matrices.

[1]  Friedrich Pillichshammer,et al.  Sums of distances to the nearest integer and the discrepancy of digital nets , 2003 .

[2]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[3]  Robert Sedgewick,et al.  Permutation Generation Methods , 1977, CSUR.

[4]  Alexander Keller,et al.  Efficient Multidimensional Sampling , 2002, Comput. Graph. Forum.

[5]  Henri Faure Discrepancy and diaphony of digital (0,1)-sequences in prime base , 2005 .

[6]  Alexander Keller,et al.  Fast Generation of Randomized Low-Discrepancy Point Sets , 2002 .

[7]  Art B. Owen,et al.  Monte Carlo extension of quasi-Monte Carlo , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[8]  Alexander Keller Trajectory Splitting by Restricted Replication , 2004, Monte Carlo Methods Appl..

[9]  Francois Panneton Construction d'ensembles de points basee sur des recurrences lineaires dans un corps fini de caracteristique 2 pour la simulation Monte Carlo et l'integration quasi-Monte Carlo , 2004 .

[10]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[11]  Alexander Keller,et al.  Efficient Simultaneous Simulation of Markov Chains , 2008 .

[12]  J. Yellott Spectral consequences of photoreceptor sampling in the rhesus retina. , 1983, Science.

[13]  Robert L. Cook,et al.  The Reyes image rendering architecture , 1987, SIGGRAPH.

[14]  Wolfgang Heidrich,et al.  Interleaved Sampling , 2001, Rendering Techniques.

[15]  Shu Tezuka,et al.  Another Random Scrambling of Digital ( t , s )-Sequences , 2002 .

[16]  Robert L. Cook,et al.  Distributed ray tracing , 1998 .

[17]  Alexander Keller,et al.  Myths of Computer Graphics , 2006 .

[18]  G. Larcher,et al.  Walsh Series Analysis of the L2-Discrepancyof Symmetrisized Point Sets , 2001 .

[19]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[20]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[21]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[22]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[23]  William H. Press,et al.  Numerical recipes in C , 2002 .

[24]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[25]  Wolfgang Ch. Schmid,et al.  Calculation of the Quality Parameter of Digital Nets and Application to Their Construction , 2001, J. Complex..