Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems

We present an algorithm which returns a shortest path and related number of entanglements for a given configuration of a polymeric system in 2 or 3 dimensions. Rubinstein and Helfand, and later Everaers et al. introduced a concept to extract primitive paths for dense polymeric melts made of linear chains (a multiple disconnected multibead 'path'), where each primitive path is defined as a path connecting the (space-fixed) ends of a polymer under the constraint of non-interpenetration (excluded volume) between primitive paths of different chains, such that the multiple disconnected path fulfills a minimization criterion. The present algorithm uses geometrical operations and provides a-model independent-efficient approximate solution to this challenging problem. Primitive paths are treated as 'infinitely' thin (we further allow for finite thickness to model excluded volume), and tensionless lines rather than multibead chains, excluded volume is taken into account without a force law. The present implementation allows to construct a shortest multiple disconnected path (SP) for 2D systems (polymeric chain within spherical obstacles) and an optimal SP for 3D systems (collection of polymeric chains). The number of entanglements is then simply obtained from the SP as either the number of interior kinks, or from the average length of a line segment. Further, information about structure and potentially also the dynamics of entanglements is immediately available from the SP. We apply the method to study the 'concentration' dependence of the degree of entanglement in phantom chain systems.

[1]  Chee-Keng Yap,et al.  Approximate Euclidean shortest path in 3-space , 1994, SCG '94.

[2]  Ross A. Honsberger,et al.  Episodes in Nineteenth and Twentieth Century Euclidean Geometry , 1996 .

[3]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[4]  Martin Kröger,et al.  Projection from an atomistic chain contour to its primitive path , 2002 .

[5]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[6]  G. Marin,et al.  Concentration and molecular weight dependence of viscoelastic properties in linear and star polymers , 1981 .

[7]  Martin Kröger,et al.  On a quantity describing the degree of chain entanglement in linear polymer systems , 1994 .

[8]  Martin Kröger,et al.  Recognition and analysis of local structure in polycrystalline configurations , 2002 .

[9]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[10]  J. H. Weiner,et al.  Simulated polymer melt stress relaxation. II. Search for entanglements , 1995 .

[11]  P. G. de Gennes,et al.  Dynamics of Entangled Polymer Solutions. I. The Rouse Model , 1976 .

[12]  Joseph S. B. Mitchell,et al.  The weighted region problem: finding shortest paths through a weighted planar subdivision , 1991, JACM.

[13]  Witten,et al.  Individual entanglements in a simulated polymer melt. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Micha Sharir,et al.  Approximating shortest paths on a convex polytope in three dimensions , 1997, JACM.

[15]  C. Tanford Macromolecules , 1994, Nature.

[16]  S F Edwards,et al.  The statistical mechanics of polymerized material , 1967 .

[17]  Kurt Kremer,et al.  Computer simulations in polymer physics , 1995 .

[18]  Martin Kröger,et al.  Simple models for complex nonequilibrium fluids , 2004 .

[19]  Michael Rubinstein,et al.  Statistics of the entanglement of polymers: Concentration effects , 1985 .

[20]  K. Showalter,et al.  Navigating Complex Labyrinths: Optimal Paths from Chemical Waves , 1995, Science.

[21]  M. Doi,et al.  An estimation of the tube radius in the entanglement effect of concentrated polymer solutions , 1975 .

[22]  Micha Sharir,et al.  Algorithmic motion planning in robotics , 1991, Computer.

[23]  Michael L. Klein,et al.  Unknotting of a Polymer Strand in a Melt , 2004 .

[24]  B. M. Fulk MATH , 1992 .

[25]  Kenneth E. Evans,et al.  Computer simulation of the dynamics of highly entangled polymers. Part 2.—Static properties of the primitive chain , 1981 .

[26]  David J. Lohse,et al.  Chain dimensions and entanglement spacings in dense macromolecular systems , 1999 .

[27]  J. Noolandi,et al.  A new theory of entanglements and dynamics in dense polymer systems , 1988 .

[28]  P. G. de Gennes,et al.  Dynamical Scaling for Polymers in Theta Solvents , 1977 .

[29]  Werner Ballmann,et al.  Lectures on Spaces of Nonpositive Curvature , 1995 .

[30]  Tomohiko Yamaguchi,et al.  Bifurcation of vortices in the light-sensitive oscillatory Belousov-Zhabotinsky medium , 1996 .

[31]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[32]  J. Padding,et al.  A time-integrated estimate of the entanglement mass in polymer melts in agreement with the one determined by time-resolved measurements. , 2004, The Journal of chemical physics.

[33]  Sariel Har-Peled Constructing Approximate Shortest Path Maps in Three Dimensions , 1999, SIAM J. Comput..

[34]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[35]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[36]  Dima Grigoriev,et al.  Approximating shortest path for the skew lines problem in time doubly logarithmic in 1/epsilon , 2004, Theor. Comput. Sci..

[37]  Dmitry Burago,et al.  Uniform estimates on the number of collisions in semi-dispersing billiards , 1998 .

[38]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[39]  T. Witten,et al.  Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties , 1994 .

[40]  Micha Sharir,et al.  On Shortest Paths in Polyhedral Spaces , 1986, SIAM J. Comput..

[41]  Kurt Kremer,et al.  Rheology and Microscopic Topology of Entangled Polymeric Liquids , 2004, Science.

[42]  Vlasis G. Mavrantzas,et al.  Crossover from the Rouse to the Entangled Polymer Melt Regime: Signals from Long, Detailed Atomistic Molecular Dynamics Simulations, Supported by Rheological Experiments , 2003 .

[43]  Dima Grigoriev,et al.  Polytime algorithm for the shortest path in a homotopy class amidst semi-algebraic obstacles in the plane , 1998, ISSAC '98.

[44]  Andrzej Kolinski,et al.  Does reptation describe the dynamics of entangled, finite length polymer systems? A model simulation , 1987 .

[45]  Jan van Leeuwen,et al.  Handbook Of Theoretical Computer Science, Vol. A , 1990 .

[46]  Jörg-Rüdiger Sack,et al.  An epsilon-Approximation for Weighted Shortest Paths on Polyhedral Surfaces , 1998, SWAT.

[47]  Sachin Shanbhag,et al.  Chain retraction potential in a fixed entanglement network. , 2005, Physical review letters.

[48]  W Nörenberg Are superheavies a key to nuclear physics , 1990 .

[49]  D Richter,et al.  Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts. , 2002, Physical review letters.

[50]  P. G. de Gennes,et al.  Remarks on entanglements and rubber elasticity , 1974 .

[51]  Christos H. Papadimitriou,et al.  An Algorithm for Shortest-Path Motion in Three Dimensions , 1985, Inf. Process. Lett..

[52]  Martin Kröger,et al.  Efficient hybrid algorithm for the dynamic creation of wormlike chains in solutions, brushes, melts and glasses , 1999 .

[53]  Kurt Kremer,et al.  Identifying the primitive path mesh in entangled polymer liquids , 2004 .

[54]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[55]  Andrew Adamatzky,et al.  Computing in nonlinear media and automata collectives , 2001 .

[56]  Kurt Kremer,et al.  Reply to the Comment on: “What is the Entanglement Length in a Polymer Melt ?“ , 2000 .

[57]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[58]  Akira Onuki,et al.  Entanglements in quiescent and sheared polymer melts. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.

[60]  B. Dickinson,et al.  The complexity of analog computation , 1986 .

[61]  J. Heintz,et al.  Search for shortest path around semialgebraic obstacles in the plane , 1994 .

[62]  Hans Christian Öttinger,et al.  Coarse-graining of wormlike polymer chains for substantiating reptation , 2004 .