Preliminary control variates to improve empirical regression methods

Abstract. We design a variance reduction method to reduce the estimation error in regression problems. It is based on an appropriate use of other known regression functions. Theoretical estimates are supporting this improvement and numerical experiments are illustrating the efficiency of the method.

[1]  W. Schoutens Stochastic processes and orthogonal polynomials , 2000 .

[2]  Daniel Egloff Monte Carlo algorithms for optimal stopping and statistical learning , 2004, math/0408276.

[3]  H. Pham,et al.  A probabilistic numerical method for optimal multiple switching problem and application to investments in electricity generation , 2012, 1210.8175.

[4]  Josef Teichmann,et al.  Polynomial processes and their applications to mathematical finance , 2008, Finance and Stochastics.

[5]  Arkadi Nemirovski,et al.  Topics in Non-Parametric Statistics , 2000 .

[6]  Rémi Munos,et al.  Numerical Methods for the Pricing of Swing Options: A Stochastic Control Approach , 2006 .

[7]  E. Gobet,et al.  Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations , 2006 .

[8]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[9]  Emmanuel Gobet,et al.  Approximation of discrete BSDE using least-squares regression , 2011 .

[10]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[11]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[12]  E. Gobet,et al.  A regression-based Monte Carlo method to solve backward stochastic differential equations , 2005, math/0508491.

[13]  László Györfi,et al.  Quantization for Nonparametric Regression , 2008, IEEE Transactions on Information Theory.

[14]  B. Bouchard,et al.  Monte-Carlo valuation of American options: facts and new algorithms to improve existing methods , 2012 .