A 2-mm$^{2}$ 0.1–5 GHz Software-Defined Radio Receiver in 45-nm Digital CMOS

A software-defined radio (SDR) should theoretically receive any modulated frequency channel in the (un)licensed spectrum, and guarantee top performance with energy savings, while still being integrated in a digital CMOS technology. This paper demonstrates a practical 0.1-5 GHz front-end implementation for such an SDR concept, including receiver and local oscillator (LO), with only 2-mm2 core area occupation in a 45-nm CMOS process. This scalable radio uses shunt-shunt feedback LNAs, a passive mixer with enhanced out-of-band IIP3, and a fifth order low-area 0.5-20 MHz baseband filter. LO quadrature signals are generated from a dual-VCO 4-10 GHz fractional-N PLL. With noise figure between 2.3 dB and 6.5 dB, out-of-band IIP3 between -3 dBm and -10 dBm, and total power consumption between 59 and 115 mW from a 1.1-V supply voltage, the presented prototype favorably compares with state-of-the-art dedicated radios while enabling, for the first time, wideband reconfigurable performance and energy scalability.

[1]  R. Bishop,et al.  A 5-GHz 108-Mb/s 2 $\times$2 MIMO Transceiver RFIC With Fully Integrated 20.5-dBm ${\rm P}_{\rm 1dB}$ Power Amplifiers in 90-nm CMOS , 2006, IEEE Journal of Solid-State Circuits.

[2]  M.-C.F. Chang,et al.  A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver , 2005, IEEE Journal of Solid-State Circuits.

[3]  H. J. De Los Santos Commentary: NanoMEMS , 2008, WMED 2008.

[4]  Saeed Mohammadi,et al.  A reconfigurable MEMS-less CMOS tuner for software defined radio , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[5]  Liesbet Van der Perre,et al.  Green Software Defined Radios - Enabling seamless connectivity while saving on hardware and energy , 2009, Series on Integrated Circuits and Systems.

[6]  K. Vavelidis,et al.  A 65 nm CMOS Multistandard, Multiband TV Tuner for Mobile and Multimedia Applications , 2008, IEEE Journal of Solid-State Circuits.

[7]  Jan Craninckx,et al.  Wideband VCO with Simultaneous Switching of Frequency Band, Active Core and Varactor Size , 2006 .

[8]  G. Fischer,et al.  RF MEMS for ubiquitous wireless connectivity. Part I. Fabrication , 2004, IEEE Microwave Magazine.

[9]  A.A. Abidi,et al.  The Path to the Software-Defined Radio Receiver , 2007, IEEE Journal of Solid-State Circuits.

[10]  Andrea Baschirotto,et al.  A Fully Reconfigurable Software-Defined Radio Transceiver in 0.13μm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[11]  H.J. De Los Santos,et al.  MEMS for future microwave systems , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[12]  Lu Han,et al.  A Single–Chip 10-Band WCDMA/HSDPA 4-Band GSM/EDGE SAW-less CMOS Receiver With DigRF 3G Interface and ${+}$90 dBm IIP2 , 2009, IEEE Journal of Solid-State Circuits.

[13]  Qiang Li,et al.  A Fully Integrated MIMO Multiband Direct Conversion CMOS Transceiver for WLAN Applications (802.11n) , 2007, IEEE Journal of Solid-State Circuits.

[14]  Jan Craninckx,et al.  Calibration Method Enabling Low-Cost SDR , 2008, 2008 IEEE International Conference on Communications.

[15]  R.B. Staszewski,et al.  The First Fully Integrated Quad-Band GSM/GPRS Receiver in a 90-nm Digital CMOS Process , 2006, IEEE Journal of Solid-State Circuits.

[16]  Ahmad Mirzaei,et al.  Second-Order Intermodulation in Current-Commutating Passive FET Mixers , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  André Bourdoux,et al.  Green Reconfigurable Radio Systems , 2007, IEEE Signal Processing Magazine.

[18]  Andrea Baschirotto,et al.  Flexible Baseband Analog Circuits for Software-Defined Radio Front-Ends , 2007, IEEE Journal of Solid-State Circuits.

[19]  Rudy Lauwereins,et al.  A Coarse-Grained Array Accelerator for Software-Defined Radio Baseband Processing , 2008, IEEE Micro.

[20]  H.J. De Los Santos,et al.  RF MEMS for ubiquitous wireless connectivity. Part II. Application , 2004, IEEE Microwave Magazine.

[21]  Jon Strange,et al.  Single-Chip Tri-Band WCDMA/HSDPA Transceiver without External SAW Filters and with Integrated TX Power Control , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[22]  Jan Craninckx,et al.  Calibration of SDR Circuit Imperfections , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[23]  W. Redman-White,et al.  1/f noise in passive CMOS mixers for low and zero IF integrated receivers , 2001, Proceedings of the 27th European Solid-State Circuits Conference.

[24]  C.S. Vaucher,et al.  A family of low-power truly modular programmable dividers in standard 0.35-/spl mu/m CMOS technology , 2000, IEEE Journal of Solid-State Circuits.

[25]  Wolfgang Eberle,et al.  A scalable low-power digital communication network architecture and an automated design path for controlling the analog/RF part of SDR transceivers , 2008, 2008 Design, Automation and Test in Europe.

[26]  Minjae Lee,et al.  An 800-MHz–6-GHz Software-Defined Wireless Receiver in 90-nm CMOS , 2006, IEEE Journal of Solid-State Circuits.

[27]  Elias Dagher,et al.  Single-chip multiband WCDMA/HSDPA/HSUPA/EGPRS transceiver with diversity receiver and 3G DigRF interface without SAW filters in transmitter / 3G receiver paths , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[28]  Joseph Mitola,et al.  The software radio architecture , 1995, IEEE Commun. Mag..

[29]  P. Wambacq,et al.  Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS , 2008, IEEE Journal of Solid-State Circuits.

[30]  Li Lin,et al.  A fully integrated 2×2 MIMO dual-band dual- mode direct-conversion CMOS transceiver for WiMAX/WLAN applications , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[31]  M. Steyaert,et al.  A fully integrated CMOS DCS-1800 frequency synthesizer , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[32]  Michiel Steyaert,et al.  A 100-kHz to 20-MHz Reconfigurable Power-Linearity Optimized $G_m$–$C$ Biquad in 0.13-$\mu$ m CMOS , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[33]  A. Mazzanti,et al.  Class-C Harmonic CMOS VCOs, With a General Result on Phase Noise , 2008, IEEE Journal of Solid-State Circuits.

[34]  Yu-Che Yang,et al.  A Quantization Noise Suppression Technique for$DeltaSigma$Fractional-$N$Frequency Synthesizers , 2006, IEEE Journal of Solid-State Circuits.

[35]  V. Derudder,et al.  A 200Mbps+ 2.14nJ/b digital baseband multi processor system-on-chip for SDRs , 2009, 2009 Symposium on VLSI Circuits.

[36]  Michiel Steyaert,et al.  A 0.1-5GHz dual-VCO software-defined sigma delta frequency synthesizer in 45nm digital CMOS , 2009, RFIC 2009.

[37]  Michiel Steyaert,et al.  A 0.1–5GHz Dual-VCO software-defined ∑Δ frequency synthesizer in 45nm digital CMOS , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[38]  Andrea Baschirotto,et al.  An 820μW 9b 40MS/s Noise-Tolerant Dynamic-SAR ADC in 90nm Digital CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[39]  Andrea Baschirotto,et al.  Baseband Analog Circuits for Software Defined Radio , 2010 .