Rubidium spectroscopy on a chip

We review the current status of integrating optical quantum interference effects such as electromagnetically induced transparency (EIT), slow light, and highly efficient nonlinear processes on a semiconductor chip. A necessary prerequisite for combining effects such as slow light and related phenomena with the convenience of integrated optics is the development of integrated alkali vapor cells. Here, we describe the development of integrated rubidium cells based on hollow-core antiresonant reflecting optical waveguides (ARROWs). Hollow-core waveguides were fabricated on a silicon platform using conventional microfabrication and filled with rubidium vapor using different methods. Rubidium absorption through the waveguides was successfully observed which opens the way to integrated atomic and molecular on a chip. The realization of quantum coherence effects requires additional surface treatment of the waveguide walls, and the effects of the surface coating on the waveguide properties are presented.

[1]  T. A. Birks,et al.  Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres , 2005, Nature.

[2]  A. Hawkins,et al.  Optical characterization of arch-shaped ARROW waveguides with liquid cores. , 2005, Optics express.

[3]  Fetah Benabid,et al.  Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber , 2006 .

[4]  D. Deamer,et al.  Integrated optical waveguides with liquid cores , 2004 .

[5]  A. Hawkins,et al.  Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Kevin Knabe,et al.  Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber. , 2006, Optics letters.

[7]  Alexander L. Gaeta,et al.  Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber , 2006 .

[8]  L. Hau,et al.  Nonlinear Optics at Low Light Levels , 1999 .

[9]  T. Koch,et al.  Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures , 1986 .

[10]  Sarah E. Harris,et al.  Photon Switching by Quantum Interference , 1998 .

[11]  D. F. Kimball,et al.  Relaxation of atomic polarization in paraffin-coated cesium vapor cells (13 pages) , 2005 .

[12]  Alexander L. Gaeta,et al.  Coherent resonant interactions with molecules and slow light in photonic band-gap fibers , 2004 .

[13]  Philip Hemmer,et al.  Resonant Enhancement of Parametric Processes via Radiative Interference and Induced Coherence , 1998 .

[14]  T. Hänsch,et al.  Precision spectroscopy of hydrogen and femtosecond laser frequency combs , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[16]  Enrique Parra,et al.  Application of slow light: a DARPA perspective , 2005, SPIE OPTO.

[17]  S. E. Harris,et al.  Low-light-level nonlinear optics with slow light , 2003 .

[18]  Philip Russell Holey fiber concept spawns optical-fiber renaissance , 2002 .

[19]  Svenja Knappe,et al.  Miniature vapor-cell atomic-frequency references , 2002 .

[20]  Svenja Knappe,et al.  Dark-line atomic resonances in submillimeter structures. , 2004, Optics letters.

[21]  Jacques Vanier,et al.  Relaxation and frequency shifts in the ground state of Rb 85 , 1974 .

[22]  D. Conkey,et al.  Fabrication of hollow waveguides with sacrificial aluminum cores , 2005, IEEE Photonics Technology Letters.

[23]  P. Russell,et al.  Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber. , 2005, Physical review letters.

[24]  A. Hawkins,et al.  Integrated hollow waveguides with arch-shaped cores , 2006, IEEE Photonics Technology Letters.

[25]  D. Deamer,et al.  Single-molecule detection sensitivity using planar integrated optics on a chip. , 2006, Optics letters.

[26]  A. Hawkins,et al.  Waveguide loss optimization in hollow-core ARROW waveguides. , 2005, Optics express.

[27]  Sarah E. Harris,et al.  Nonlinear Optical Processes Using Electromagnetically Induced Transparency , 1990, Digest on Nonlinear Optics: Materials, Phenomena and Devices.

[28]  Valeriy V. Yashchuk,et al.  Light-induced desorption of alkali-metal atoms from paraffin coating , 2002 .

[29]  A. Hawkins,et al.  Integrated ARROW waveguides with hollow cores. , 2004, Optics express.

[30]  Aaron R. Hawkins,et al.  Electromagnetically induced transparency in alkali atoms integrated on a semiconductor chip , 2005 .

[31]  S. Harris,et al.  Lasers without inversion: interference of dressed lifetime-broadened states. , 1989, Optics letters.

[32]  M. Lukin Colloquium: Trapping and manipulating photon states in atomic ensembles , 2003 .

[33]  B. Jaduszliwer,et al.  Alkali reactions with wall coating materials used in atomic resonance cells , 1987 .