Unified Large-Sample Theory of General Chi-Squared Statistics for Tests of Fit

[1]  H. Chernoff,et al.  The Use of Maximum Likelihood Estimates in {\chi^2} Tests for Goodness of Fit , 1954 .

[2]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[3]  E. Bofinger Goodness‐Of‐Fit Test Using Sample Quantiles , 1973 .

[4]  G. Neuhaus,et al.  On Weak Convergence of Stochastic Processes with Multidimensional Time Parameter , 1971 .

[5]  G. Neuhaus Zur verteilungskonvergenz einiger varianten der cramér-von mises-statistik , 1973 .

[6]  D. Robson,et al.  A Chi-Square Statistic for Goodness-of-Fit Tests , 1971 .

[7]  D. S. Moore,et al.  A CHI-SQUARE STATISTIC WITH RANDOM CELL BOUNDARIES' , 1971 .

[8]  Peter J. Bickel,et al.  Convergence Criteria for Multiparameter Stochastic Processes and Some Applications , 1971 .

[9]  Ram C. Dahiya,et al.  How Many Classes in the Pearson Chi-Square Test? , 1973 .

[10]  O. Kempthorne The classical problem of inference--goodness of fit , 1967 .

[11]  D. M. Chibisov Certain Chi-Square Type Tests for Continuous Distributions , 1971 .

[12]  James Durbin,et al.  Weak convergence of the sample distribution function when parameters are estimated , 1973 .

[13]  V. K. Murthy,et al.  Limiting Distributions of Some Variations of the Chi-Square Statistic , 1970 .

[14]  Ram C. Dahiya,et al.  Pearson chi-squared test of fit with random intervals , 1972 .

[15]  H. Witting Über einen χ2-Test, dessen Klassen durch geordnete Stichprobenfunktionen festgelegt werden , 1959 .

[16]  W. E. Lever,et al.  THE LIMITING DISTRIBUTION OF THE LIKELIHOOD RATIO STATISTIC UNDER A CLASS OF LOCAL ALTERNATIVES. , 1967 .