A least-squares method for the inverse reflector problem in arbitrary orthogonal coordinates

Abstract In this article we solve the inverse reflector problem for a light source emitting a parallel light bundle and a target in the far-field of the reflector by use of a least-squares method. We derive the Monge–Ampere equation, expressing conservation of energy, while assuming an arbitrary coordinate system. We generalize a Cartesian coordinate least-squares method presented earlier by Prins et al. [13] to arbitrary orthogonal coordinate systems. This generalized least-squares method provides us the freedom to choose a coordinate system suitable for the shape of the light source. This results in significantly increased numerical accuracy. Decrease of errors by factors up to 104 is reported. We present the generalized least-squares method and compare its numerical results with the Cartesian version for a disk-shaped light source.

[1]  Tsunemasa Taguchi Present Status of Energy Saving Technologies and Future Prospect in White LED Lighting , 2008 .

[2]  Adam M. Oberman,et al.  Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation , 2012, J. Comput. Phys..

[3]  Fengzhou Fang,et al.  Manufacturing and measurement of freeform optics , 2013 .

[4]  Andrew S. Glassner,et al.  An introduction to ray tracing , 1989 .

[5]  W. Rudin Real and complex analysis , 1968 .

[6]  Cr Corien Prins,et al.  Inverse methods for illumination optics , 2014 .

[7]  Gaspard Monge Application de l'analyse a la géométrie, a l'usage de l'école impériale polytechnique , 1809 .

[8]  Roland Haitz,et al.  Solid‐state lighting: ‘The case’ 10 years after and future prospects , 2011 .

[9]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[10]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[11]  J. H. M. ten Thije Boonkkamp,et al.  A Least-Squares Method for Optimal Transport Using the Monge-Ampère Equation , 2015, SIAM J. Sci. Comput..

[12]  Danny C. Sorensen,et al.  A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge − ampère equation in dimension two , 2013 .

[13]  Vladimir Oliker,et al.  Designing Freeform Lenses for Intensity and Phase Control of Coherent Light with Help from Geometry and Mass Transport , 2011 .

[14]  J. Morgan,et al.  Ricci Flow and the Poincare Conjecture , 2006, math/0607607.

[15]  Allen R. Tannenbaum,et al.  An Efficient Numerical Method for the Solution of the L2 Optimal Mass Transfer Problem , 2010, SIAM J. Sci. Comput..

[16]  Kolja Brix,et al.  Solving the Monge–Ampère equations for the inverse reflector problem , 2014, 1404.7821.

[17]  C. Villani Topics in Optimal Transportation , 2003 .

[18]  Harvey Cohn,et al.  Conformal Mapping on Riemann Surfaces , 1967 .

[19]  R. Ho Algebraic Topology , 2022 .

[20]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[21]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[22]  Adam M. Oberman,et al.  Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation , 2010, J. Comput. Phys..

[23]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[24]  M. Spivak Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus , 2019 .

[25]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .