Proof Transformation by CERES

Cut-elimination is the most prominent form of proof transformation in logic. The elimination of cuts in formal proofs corresponds to the removal of intermediate statements (lemmas) in mathematical proofs. The cut-elimination method CERES (cut-elimination by resolution) works by constructing a set of clauses from a proof with cuts. Any resolution refutation of this set then serves as a skeleton of an LK-proof with only atomic cuts. In this paper we present an extension of CERES to a calculus LKDe which is stronger than the Gentzen calculus LK (it contains rules for introduction of definitions and equality rules). This extension makes it much easier to formalize mathematical proofs and increases the performance of the cut-elimination method. The system CERES already proved efficient in handling very large proofs.

[1]  Andrei Voronkov,et al.  Equality Reasoning in Sequent-Based Calculi , 2001, Handbook of Automated Reasoning.

[2]  Albert Rubio,et al.  Paramodulation-Based Theorem Proving , 2001, Handbook of Automated Reasoning.

[3]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[4]  Alexander Leitsch,et al.  Towards a clausal analysis of cut-elimination , 2006, J. Symb. Comput..

[5]  George Polya,et al.  Induction and Analogy in Mathematics , 1954 .

[6]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .

[7]  Alexander Leitsch,et al.  Cut-elimination and Redundancy-elimination by Resolution , 2000, J. Symb. Comput..

[8]  Elmar Eder,et al.  Relative complexities of first order calculi , 1992, Artificial intelligence = Künstliche Intelligenz.

[9]  J. Girard Proof Theory and Logical Complexity , 1989 .

[10]  Alan Robinson,et al.  Handbook of automated reasoning , 2001 .

[11]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[12]  Alexander Leitsch,et al.  Cut-Elimination: Experiments with CERES , 2005, LPAR.

[13]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[14]  H. Luckhardt,et al.  Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale Anzahlschranken , 1989, Journal of Symbolic Logic.

[15]  G. Pólya,et al.  Mathematics and Plausible Reasoning: Vol. I: Induction and Analogy in Mathematics , 1979 .

[16]  Alexander Leitsch,et al.  On Skolemization and Proof Complexity , 1994, Fundam. Informaticae.

[17]  Christian Urban Classical Logic and Computation , 2000 .

[18]  Alexander Leitsch,et al.  Cut Normal Forms and Proof Complexity , 1999, Ann. Pure Appl. Log..

[19]  G. Pólya Patterns of plausible inference , 1970 .