A review of numerical modeling of solid oxide fuel cells

[1]  Juergen Fleig Solid Oxide Fuel Cell Cathodes: Polarization Mechanisms and Modeling of the Electrochemical Performance , 2003 .

[2]  Daniel Favrat,et al.  Modeling and experimental validation of solid oxide fuel cell materials and stacks , 2005 .

[3]  B. Sundén,et al.  Simulation of fully developed laminar heat and mass transfer in fuel cell ducts with different cross-sections , 2001 .

[4]  J. Malzbender,et al.  Residual stresses in planar solid oxide fuel cells , 2005 .

[5]  S. Campanari,et al.  Comparison of Finite Volume SOFC Models for the Simulation of a Planar Cell Geometry , 2005 .

[6]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[7]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[8]  Andrei G. Fedorov,et al.  Radiation heat transfer analysis of the monolith type solid oxide fuel cell , 2003 .

[9]  C. Hong,et al.  Multiscale Parametric Studies on the Transport Phenomenon of a Solid Oxide Fuel Cell , 2005 .

[10]  A simple model for interconnect design of planar solid oxide fuel cells , 2003 .

[11]  Yoshio Matsuzaki,et al.  Evaluation and modeling of performance of anode-supported solid oxide fuel cell , 2000 .

[12]  Elisabetta Arato,et al.  Some more considerations on the optimization of cermet solid oxide fuel cell electrodes , 1998 .

[13]  Minking K. Chyu,et al.  Novel gas distributors and optimization for high power density in fuel cells , 2005 .

[14]  W. Winkler,et al.  The design of stationary and mobile solid oxide fuel cell–gas turbine systems , 2002 .

[15]  Bengt Sundén,et al.  Analysis of Intermediate Temperature Solid Oxide Fuel Cell Transport Processes and , 2005 .

[16]  Tohru Kato,et al.  Numerical analysis of output characteristics of tubular SOFC with internal reformer , 2001 .

[17]  Nigel P. Brandon,et al.  Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell. II. Model-based dynamic performance and control , 2005 .

[18]  M. Khaleel,et al.  A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC® , 2004 .

[19]  C. Adjiman,et al.  Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance , 2004 .

[20]  Comas Haynes,et al.  Characterizing heat transfer within a commercial-grade tubular solid oxide fuel cell for enhanced thermal management , 2001 .

[21]  P. Debenedetti,et al.  Cross-flow, solid-state electrochemical reactors: a steady state analysis , 1985 .

[22]  Mathematical Modeling of Cross Plane SOFC with Internal Reforming , 1993 .

[23]  N. Bessette,et al.  A Mathematical Model of a Solid Oxide Fuel Cell , 1995 .

[24]  S. Patankar,et al.  Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations , 1988 .

[25]  Irving Langmuir,et al.  The convection and conduction of heat in gases , 1912, Proceedings of the American Institute of Electrical Engineers.

[26]  Chao-Yang Wang,et al.  Computational Fluid Dynamics Modeling of Solid Oxide Fuel Cells , 2003 .

[27]  K. Nozaki,et al.  AC impedance behavior of a practical-size single-cell SOFC under DC current , 2004 .

[28]  Jenn-Jiang Hwang,et al.  Detailed characteristic comparison between planar and MOLB-type SOFCs , 2005 .

[29]  N. Brandon,et al.  Modelling of cells, stacks and systems based around metal-supported planar IT-SOFC cells with CGO electrolytes operating at 500–600 °C , 2005 .

[30]  Robert J. Kee,et al.  Homogeneous kinetics and equilibrium predictions of coking propensity in the anode channels of direct oxidation solid-oxide fuel cells using dry natural gas , 2003 .

[31]  I. Yasuda,et al.  3-D model calculation for planar SOFC , 2001 .

[32]  Stylianos G. Neophytides The reversed flow operation of a crossflow solid oxide fuel cell monolith , 1999 .

[33]  V. Antonucci,et al.  Micro-modelling of solid oxide fuel cell electrodes , 1998 .

[34]  Chao-Yang Wang,et al.  Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells , 2003 .

[35]  A SIMULTANEOUS SOLUTION OF ALL TRANSPORT PROCESSES IN A SOLID OXIDE FUEL CELL , 1996 .

[36]  J. R. McDonald,et al.  An integrated SOFC plant dynamic model for power systems simulation , 2000 .

[37]  L. Singheiser,et al.  Oxidation Induced Lifetime Limits of Chromia Forming Ferritic Interconnector Steels , 2004 .

[38]  Peiwen Li,et al.  Numerical Modeling and Performance Study of a Tubular SOFC , 2004 .

[39]  Khiam Aik Khor,et al.  Simulation of a composite cathode in solid oxide fuel cells , 2004 .

[40]  E. Achenbach Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack , 1994 .

[41]  Jon G. Pharoah,et al.  Modeling radiation heat transfer with participating media in solid oxide fuel cells , 2006 .

[42]  Nigel P. Brandon,et al.  SOFC technology development at Rolls-Royce , 2000 .

[43]  Jürgen Fleig,et al.  Electrodes and electrolytes in micro-SOFCs: a discussion of geometrical constraints , 2004 .

[44]  Giovanni Dotelli,et al.  Composite materials as electrolytes for solid oxide fuel cells: simulation of microstructure and electrical properties , 2002 .

[45]  François Maréchal,et al.  Generalized model of planar SOFC repeat element for design optimization , 2004 .

[46]  A. King,et al.  Performance modelling of solid oxide fuel cells , 2001, Heat Transfer: Volume 4 — Combustion and Energy Systems.

[47]  D. Stolten,et al.  Modeling of Mass and Heat Transport in Planar Substrate Type SOFCs , 2003 .

[48]  V. T. Srikar,et al.  Structural design considerations for micromachined solid oxide fuel cells , 2004 .

[49]  Anil V. Virkar,et al.  The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells , 2000 .

[50]  François Maréchal,et al.  Process flow model of solid oxide fuel cell system supplied with sewage biogas , 2004 .

[51]  L. Kershenbaum,et al.  Modelling of an indirect internal reforming solid oxide fuel cell , 2002 .

[52]  Francisco Jurado Modeling SOFC plants on the distribution system using identification algorithms , 2004 .

[53]  N. Sammes,et al.  Computational analysis of the gas-flow distribution in solid oxide fuel cell stacks , 1996 .

[54]  S. Chan,et al.  Polarization effects in electrolyte/electrode-supported solid oxide fuel cells , 2002 .

[55]  Stefano Ubertini,et al.  Modeling solid oxide fuel cell operation: Approaches, techniques and results , 2006 .

[56]  N. Sammes,et al.  Design and fabrication of a 100 W anode supported micro-tubular SOFC stack , 2005 .

[57]  Paola Costamagna The benefit of solid oxide fuel cells with integrated air pre-heater , 1997 .

[58]  Steven Beale,et al.  Computer methods for performance prediction in fuel cells , 2003 .

[59]  Miriam Kemm,et al.  Steady state and transient thermal stress analysis in planar solid oxide fuel cells , 2005 .

[60]  A. Virkar,et al.  Fuel Composition and Diluent Effect on Gas Transport and Performance of Anode-Supported SOFCs , 2003 .

[61]  L. Schaefer,et al.  A numerical model coupling the heat and gas species' transport processes in a tubular SOFC , 2004 .

[62]  John Billingham,et al.  Flow and reaction in solid oxide fuel cells , 2000, Journal of Fluid Mechanics.

[63]  Paola Costamagna,et al.  Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC) , 2004 .

[64]  Khiam Aik Khor,et al.  An electrolyte model for ceramic oxygen generator and solid oxide fuel cell , 2002 .

[65]  Alberto Traverso,et al.  Modelling of Pressurised Hybrid Systems Based on Integrated Planar Solid Oxide Fuel Cell (IP‐SOFC) Technology , 2005 .

[66]  S. Sunde Simulations of Composite Electrodes in Fuel Cells , 2000 .

[67]  S. Chan,et al.  An Improved Anode Micro Model of SOFC , 2004 .

[68]  M. Khaleel,et al.  Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks , 2003 .

[69]  S. Campanari,et al.  Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry , 2004 .

[70]  G. Dagan Flow and transport in porous formations , 1989 .

[71]  Koichi Yamada,et al.  The relationship between overpotential and the three phase boundary length , 1996 .

[72]  Steven Beale,et al.  Performance predictions in solid oxide fuel cells , 2006 .

[73]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[74]  Jong Chen,et al.  Metal-organic vapor deposition of YSZ electrolyte layers for solid oxide fuel cell applications , 1997 .

[75]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[76]  Paola Costamagna,et al.  Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization , 1998 .

[77]  The Role of Radiative Heat Transfer With Participating Gases on the Temperature Distribution in Solid Oxide Fuel Cells , 2004 .

[78]  P. Aguiar,et al.  Dynamic Effects in Autothermal Systems: Application to a Coated-Wall Internally Reformed Solid Oxide Fuel Cell , 2004 .

[79]  François Maréchal,et al.  Energy balance model of a SOFC cogenerator operated with biogas , 2003 .

[80]  Werner Lehnert,et al.  Modelling of gas transport phenomena in SOFC anodes , 2000 .

[81]  Olav Bolland,et al.  Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells , 2005 .

[82]  H. Yakabe,et al.  3D simulation on the current path in planar SOFCs , 2004 .

[83]  Kohei Ito,et al.  Performance analysis of planar-type unit SOFC considering current and temperature distributions , 2000 .

[84]  S. Chan,et al.  Energy and exergy analysis of simple solid-oxide fuel-cell power systems , 2002 .

[85]  A. Jacobson,et al.  Interface structures and periodic film distortions induced by substrate-surface steps in Gd-doped ceria thin-film growth , 2005 .

[86]  Kus Hidajat,et al.  Simulation of a solid oxide fuel cell for oxidative coupling of methane , 1999 .

[87]  W. C. Heraeus,et al.  Über die elektrolytische Leitung fester Körper bei sehr hohen Temperaturen , 1899 .

[88]  Marco Mulas,et al.  A Quasi-3D computer model of a planar solid-oxide fuel cell stack , 2005 .

[89]  M. Chyu,et al.  Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack , 2003 .

[90]  Kevin Kendall,et al.  Analysis of a Model for a Loaded, Planar, Solid Oxide Fuel Cell , 2000, SIAM J. Appl. Math..

[91]  S. Chan,et al.  Anode Micro Model of Solid Oxide Fuel Cell , 2001 .

[92]  Elisabetta Arato,et al.  Fluid dynamic study of fuel cell devices: simulation and experimental validation , 1994 .

[93]  Novel anode materials for solid oxide fuel cells , 2002 .

[94]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[95]  C. Adjiman,et al.  Comparison of two IT DIR-SOFC models: Impact of variable thermodynamic, physical, and flow properties. Steady-state and dynamic analysis , 2005 .

[96]  Tsang-Dong Chung,et al.  Integrated thermal engineering analyses with heat transfer at periphery of planar solid oxide fuel cell , 2005 .

[97]  R. Herbin,et al.  Three-dimensional numerical simulation for various geometries of solid oxide fuel cells , 1996 .

[98]  Serguei N. Lvov,et al.  Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell , 2004 .

[99]  S. Cocchi,et al.  A global thermo-electrochemical model for SOFC systems design and engineering , 2003 .

[100]  P. Debenedetti,et al.  Steady-state analysis of high temperature fuel cells , 1983 .

[101]  M. Ippommatsu,et al.  Evaluation of a New Solid Oxide Fuel Cell System by Non‐isothermal Modeling , 1992 .

[102]  Nigel M. Sammes,et al.  Distribution of gas flow in internally manifolded solid oxide fuel-cell stacks , 1997 .

[103]  Romesh Kumar,et al.  Thermal‐Hydraulic Model of a Monolithic Solid Oxide Fuel Cell , 1991 .

[104]  Andrei G. Fedorov,et al.  Spectral Radiative Heat Transfer Analysis of the Planar SOFC , 2005 .

[105]  Jenn-Jiang Hwang,et al.  Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC , 2005 .