The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth‐like worlds

What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial‐type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar system's longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher‐resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to understanding the factors driving the divergent evolutionary paths of the Earth, Venus, and thousands of small rocky extrasolar planets yet to be discovered.

[1]  J. Kasting,et al.  Atmospheric Evolution on Inhabited and Lifeless Worlds , 2017 .

[2]  R. Haberle,et al.  P21C-2113: Constraining Hesperian Martian PCO2 from Mineral Analysis at Gale Crater , 2016 .

[3]  A. Steele,et al.  Heterogeneous distribution of H2O in the Martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources , 2016 .

[4]  John H. Jones,et al.  A review of volatiles in the Martian interior , 2016 .

[5]  Seiji Sugita,et al.  An in-situ K–Ar isochron dating method for planetary landers using a spot-by-spot laser-ablation technique , 2016 .

[6]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[7]  H. C. Stempels,et al.  EELT-HIRES the high-resolution spectrograph for the E-ELT , 2016, Astronomical Telescopes + Instrumentation.

[8]  Dani Guzman,et al.  The GMT-consortium large earth finder (G-CLEF): an optical echelle spectrograph for the Giant Magellan Telescope (GMT) , 2016, Astronomical Telescopes + Instrumentation.

[9]  R. A. Yingst,et al.  Large wind ripples on Mars: A record of atmospheric evolution , 2016, Science.

[10]  B. Jakosky,et al.  Argon isotopes as tracers for martian atmospheric loss , 2016 .

[11]  S. Taylor Tektites, Apollo, the Crust, and Planets: A Life with Trace Elements , 2016 .

[12]  Trevor G. Graff,et al.  Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater , 2016, Proceedings of the National Academy of Sciences.

[13]  R. Wordsworth The Climate of Early Mars , 2016, 1606.02813.

[14]  J. Head,et al.  Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy , 2016 .

[15]  S. Murchie,et al.  Orbital evidence for more widespread carbonate‐bearing rocks on Mars , 2016 .

[16]  I. Matsuyama,et al.  Late Tharsis formation and implications for early Mars , 2016, Nature.

[17]  F. McCubbin,et al.  Rb‐Sr and Sm‐Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034 , 2016 .

[18]  L. Borg,et al.  Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites , 2016 .

[19]  B. Ehlmann,et al.  Tracing the fate of carbon and the atmospheric evolution of Mars , 2015, Nature Communications.

[20]  Bruce M. Jakosky,et al.  Initial results from the MAVEN mission to Mars , 2015 .

[21]  T. Spohn,et al.  Iron snow, crystal floats, and inner-core growth: modes of core solidification and implications for dynamos in terrestrial planets and moons , 2015, Progress in Earth and Planetary Science.

[22]  B. Jakosky,et al.  The spatial distribution of planetary ion fluxes near Mars observed by MAVEN , 2015 .

[23]  T. M. Harrison,et al.  Pervasive remagnetization of detrital zircon host rocks in the Jack Hills, Western Australia and implications for records of the early geodynamo , 2015 .

[24]  D. Curtis,et al.  MAVEN observations of the response of Mars to an interplanetary coronal mass ejection , 2015, Science.

[25]  Harry Y. McSween,et al.  Petrology on Mars , 2015 .

[26]  R. E. Arvidson,et al.  Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars , 2015, Science.

[27]  W. Bottke,et al.  Growing the terrestrial planets from the gradual accumulation of submeter-sized objects , 2015, Proceedings of the National Academy of Sciences.

[28]  B. Ehlmann,et al.  Carbon sequestration on Mars , 2015 .

[29]  J. Kasting,et al.  ABIOTIC O2 LEVELS ON PLANETS AROUND F, G, K, AND M STARS: POSSIBLE FALSE POSITIVES FOR LIFE? , 2015, 1509.07863.

[30]  J. Tarduno,et al.  A Hadean to Paleoarchean geodynamo recorded by single zircon crystals , 2015, Science.

[31]  F. Scott Anderson,et al.  Rb‐Sr resonance ionization geochronology of the Duluth Gabbro: A proof of concept for in situ dating on the Moon , 2015, Rapid communications in mass spectrometry : RCM.

[32]  Patrick Pinet,et al.  In situ evidence for continental crust on early Mars , 2015 .

[33]  E. Hauber,et al.  Outgassing History and Escape of the Martian Atmosphere and Water Inventory , 2015, 1506.06569.

[34]  J. Head,et al.  Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3‐D climate model , 2015, 1506.04817.

[35]  J. Head,et al.  Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field , 2015, Science.

[36]  F. McCubbin,et al.  Petrology of igneous clasts in Northwest Africa 7034: Implications for the petrologic diversity of the martian crust , 2015 .

[37]  T. Encrenaz,et al.  Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs , 2015, Science.

[38]  John F. Mustard,et al.  Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars , 2015 .

[39]  T. Schneider,et al.  Martian atmospheric collapse: Idealized GCM studies , 2015 .

[40]  Andrew Steele,et al.  Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars , 2015, Proceedings of the National Academy of Sciences.

[41]  R. Hudson,et al.  The radiation stability of glycine in solid CO2 – In situ laboratory measurements with applications to Mars , 2015, 1503.02522.

[42]  Jean-Pierre Bibring,et al.  Widespread surface weathering on early Mars: A case for a warmer and wetter climate , 2015 .

[43]  P Coll,et al.  Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars , 2015, Journal of geophysical research. Planets.

[44]  R. Malhotra THE MASS DISTRIBUTION FUNCTION OF PLANETS , 2015, 1502.05011.

[45]  B. Ehlmann,et al.  Mineralogy and fluvial history of the watersheds of Gale, Knobel, and Sharp craters: A regional context for the Mars Science Laboratory Curiosity's exploration , 2015 .

[46]  John H. Jones,et al.  The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars , 2015, Science.

[47]  Andrew Steele,et al.  Mars methane detection and variability at Gale crater , 2015, Science.

[48]  John H. Jones,et al.  Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars , 2015 .

[49]  F. Meier,et al.  On the isobaric space of 25-hydroxyvitamin D in human serum: potential for interferences in liquid chromatography/tandem mass spectrometry, systematic errors and accuracy issues. , 2015, Rapid communications in mass spectrometry : RCM.

[50]  J. Filiberto,et al.  Constraints on the depth and thermal vigor of melting in the Martian mantle , 2015 .

[51]  F. McCubbin,et al.  Inventory of H2O in the ancient Martian regolith from Northwest Africa 7034: The important role of Fe oxides , 2014 .

[52]  F. Scott Anderson,et al.  Dating the Martian meteorite Zagami by the 87Rb-87Sr isochron method with a prototype in situ resonance ionization mass spectrometer , 2014, Rapid communications in mass spectrometry : RCM.

[53]  Benjamin P. Weiss,et al.  The lunar dynamo , 2014, Science.

[54]  B. Cohen The Potassium-Argon Laser Experiment (KArLE): In situ geochronology for planetary robotic missions , 2014, 2016 IEEE Aerospace Conference.

[55]  R. J. Sullivan,et al.  Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars , 2014 .

[56]  J. Head,et al.  Episodic warming of early Mars by punctuated volcanism , 2014 .

[57]  J. Solé In situ determination of K–Ar ages from minerals and rocks using simultaneous laser-induced plasma spectroscopy and noble gas mass spectrometry , 2014 .

[58]  Gautam Vasisht,et al.  Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST) , 2014, 1411.1754.

[59]  C. Weitz,et al.  Reconstructing the aqueous history within the southwestern Melas basin, Mars: Clues from stratigraphic and morphometric analyses of fans , 2014 .

[60]  E. A. Lima,et al.  Decline of the lunar core dynamo , 2014 .

[61]  F. Gaillard,et al.  A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres , 2014 .

[62]  Stuart J. Robbins,et al.  New crater calibrations for the lunar crater-age chronology , 2014 .

[63]  Alessandro Morbidelli,et al.  TERRESTRIAL PLANET FORMATION IN THE PRESENCE OF MIGRATING SUPER-EARTHS , 2014, 1408.1215.

[64]  A. Plesa,et al.  Partial melting in one-plate planets: Implications for thermo-chemical and atmospheric evolution , 2014 .

[65]  Helmut Lammer,et al.  Hot oxygen and carbon escape from the martian atmosphere , 2014, 1911.01107.

[66]  W. Bottke,et al.  Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts , 2014, Nature.

[67]  R. Sari,et al.  Atmospheric mass loss during planet formation: The importance of planetesimal impacts , 2014, 1406.6435.

[68]  B. Ehlmann,et al.  Mineralogy of the Martian Surface , 2014 .

[69]  J. Kasting,et al.  Warming early Mars with CO 2 and H 2 , 2014, 1405.6701.

[70]  K. Joy,et al.  Ages of Globally Distributed Lunar Paleoregoliths and Soils from 3.9 Ga to the Present , 2014 .

[71]  B. Weiss,et al.  How Long Did the Lunar Core Dynamo Persist , 2014 .

[72]  Sami W. Asmar,et al.  InSight: A Discovery Class Mission to Explore the Interior of Mars , 2014 .

[73]  D. Ming,et al.  Sulfur‐bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars , 2014 .

[74]  R. V. Morris,et al.  Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[75]  E. A. Guinness,et al.  Ancient Aqueous Environments at Endeavour Crater, Mars , 2014, Science.

[76]  D. Ming,et al.  Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[77]  D. Ming,et al.  In Situ Radiometric and Exposure Age Dating of the Martian Surface , 2014, Science.

[78]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[79]  M. Riva,et al.  ESPRESSO: The next European exoplanet hunter , 2014, 1401.5918.

[80]  Katherine Baicker,et al.  Medicaid Increases Emergency-Department Use: Evidence from Oregon's Health Insurance Experiment , 2014, Science.

[81]  D. Wagner,et al.  Microbial life of the deep biosphere , 2014 .

[82]  John Bridges,et al.  Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale crater , 2014 .

[83]  D. Ming,et al.  Abundances and implications of volatile‐bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars , 2014 .

[84]  Can Huang,et al.  Transmission of large‐amplitude ULF waves through a quasi‐parallel shock at Venus , 2014 .

[85]  T. Mccoy,et al.  The primary fO2 of basalts examined by the Spirit rover in Gusev Crater, Mars: Evidence for multiple redox states in the martian interior , 2013 .

[86]  Scott L. Murchie,et al.  Prolonged magmatic activity on Mars inferred from the detection of felsic rocks , 2013 .

[87]  F. Poulet,et al.  Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains , 2013 .

[88]  M. Humayun,et al.  Origin and age of the earliest Martian crust from meteorite NWA 7533 , 2013, Nature.

[89]  John H. Jones,et al.  Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss , 2013, Geophysical research letters.

[90]  J. Papike,et al.  Petrogenetic linkages among fO2, isotopic enrichments-depletions and crystallization history in Martian basalts. Evidence from the distribution of phosphorus in olivine megacrysts , 2013 .

[91]  F. McCubbin,et al.  A hydrogen-based oxidation mechanism relevant to planetary formation , 2013 .

[92]  H. McSween,et al.  Water and the composition of Martian magmas , 2013 .

[93]  R. V. Morris,et al.  Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover , 2013, Science.

[94]  O. Toon,et al.  Simulations of the martian hydrologic cycle with a general circulation model: Implications for the ancient martian climate , 2013 .

[95]  G. Michael Planetary surface dating from crater size–frequency distribution measurements: Multiple resurfacing episodes and differential isochron fitting , 2013 .

[96]  M. Hirschmann,et al.  Solubility of CH4 in a synthetic basaltic melt, with applications to atmosphere–magma ocean–core partitioning of volatiles and to the evolution of the Martian atmosphere , 2013 .

[97]  Andrew Steele,et al.  Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere , 2013, Science.

[98]  Christopher R. Webster,et al.  Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover , 2013, Science.

[99]  R. Hudson,et al.  Glycine's radiolytic destruction in ices: first in situ laboratory measurements for Mars. , 2013, Astrobiology.

[100]  A. Lucas,et al.  Pacing early Mars river activity: Embedded craters in the Aeolis Dorsa region imply river activity spanned ≳(1–20) Myr , 2013 .

[101]  W. Bottke,et al.  Large impact crater histories of Mars: The effect of different model crater age techniques , 2013 .

[102]  B. Wood,et al.  Volcanism on Mars controlled by early oxidation of the upper mantle , 2013, Nature.

[103]  J. Grotzinger,et al.  Bed thickness distributions on Mars: An orbital perspective , 2013 .

[104]  K. Farley,et al.  A double-spike method for K–Ar measurement: A technique for high precision in situ dating on Mars and other planetary surfaces , 2013 .

[105]  W. Fischer,et al.  Deltaic deposits at Aeolis Dorsa: Sedimentary evidence for a standing body of water on the northern plains of Mars , 2013 .

[106]  F. McCubbin,et al.  A petrogenetic model for the comagmatic origin of chassignites and nakhlites: Inferences from chlorine‐rich minerals, petrology, and geochemistry , 2013 .

[107]  O. Aharonson,et al.  Low palaeopressure of the martian atmosphere estimated from the size distribution of ancient craters , 2013, 1304.4043.

[108]  Jean-Pierre Bibring,et al.  Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view , 2013 .

[109]  S. Atreya,et al.  Radiation-induced formation of chlorine oxides and their potential role in the origin of Martian perchlorates. , 2013, Journal of the American Chemical Society.

[110]  R. Wiens,et al.  The Petrochemistry of Jake_M: A Martian Mugearite , 2013, Science.

[111]  A. Steele,et al.  Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034 , 2013, Science.

[112]  M. Kelley,et al.  The Mars Atmosphere and Volatile Evolution (MAVEN) Mission , 2013 .

[113]  Jean-Pierre Bibring,et al.  Global investigation of olivine on Mars: Insights into crust and mantle compositions , 2013 .

[114]  R. Deshpande,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[115]  T. Trautmann,et al.  Characterization of potentially habitable planets: Retrieval of atmospheric and planetary properties from emission spectra , 2013, 1301.0217.

[116]  Douglas R. Gies,et al.  FAR-ULTRAVIOLET DETECTION OF THE SUSPECTED SUBDWARF COMPANION TO THE Be STAR 59 CYGNI , 2013, 1301.0257.

[117]  L. Nittler,et al.  The redox state, FeO content, and origin of sulfur‐rich magmas on Mercury , 2013 .

[118]  V. Sautter,et al.  The petrological expression of early Mars volcanism , 2013 .

[119]  D. Schrag,et al.  Regulation of atmospheric oxygen during the Proterozoic , 2012 .

[120]  S. Murchie,et al.  A spectroscopic analysis of Martian crater central peaks: Formation of the ancient crust , 2012 .

[121]  John F. Mustard,et al.  Most Mars minerals in a nutshell: Various alteration phases formed in a single environment in Noctis Labyrinthus , 2012 .

[122]  M. Hirschmann,et al.  CO2 solubility in primitive martian basalts similar to Yamato 980459, the effect of composition on CO2 solubility of basalts, and the evolution of the martian atmosphere , 2012 .

[123]  E. Kührt,et al.  Atmospheric erosion and replenishment induced by impacts upon the Earth and Mars during a heavy bombardment , 2012 .

[124]  R. Haberle,et al.  3D modelling of the early Martian Climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. , 2012, 1210.4216.

[125]  B. Ehlmann,et al.  Magmatic precipitation as a possible origin of Noachian clays on Mars , 2012 .

[126]  John F. Mustard,et al.  Pristine Noachian crust and key geologic transitions in the lower walls of Valles Marineris: Insights into early igneous processes on Mars , 2012 .

[127]  M. Hirschmann,et al.  Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets , 2012 .

[128]  W. Bottke,et al.  A sawtooth-like timeline for the first billion years of lunar bombardment , 2012, 1208.4624.

[129]  R. Bowden,et al.  The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.

[130]  V. Ansan,et al.  The origin and timing of fluvial activity at Eberswalde crater, Mars , 2012 .

[131]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[132]  J. Head,et al.  Global modelling of the early Martian climate under a denser CO2 atmosphere: Water cycle and ice evolution , 2012, 1207.3993.

[133]  R. Bowden,et al.  A Reduced Organic Carbon Component in Martian Basalts , 2012, Science.

[134]  John F. Mustard,et al.  An in‐situ record of major environmental transitions on early Mars at Northeast Syrtis Major , 2012 .

[135]  Masaki Ogawa,et al.  Two-dimensional numerical studies on the effects of water on Martian mantle evolution induced by magmatism and solid-state mantle convection , 2012 .

[136]  J. Andrews‐Hanna The formation of Valles Marineris: 3. Trough formation through super-isostasy, stress, sedimentation, and subsidence , 2012 .

[137]  F. Leblanc,et al.  Planetary Magnetic Fields and Climate Evolution , 2012 .

[138]  Michael Manga,et al.  Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound , 2012, 1205.6226.

[139]  Alessandro Morbidelli,et al.  Building Terrestrial Planets , 2012, 1208.4694.

[140]  F. McCubbin,et al.  Is Mercury a volatile‐rich planet? , 2012 .

[141]  J. Bell,et al.  Widespread Weathered Glass on the Surface of Mars , 2012 .

[142]  Sara Seager,et al.  THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES , 2012, 1204.1544.

[143]  N. Mangold,et al.  Chronology of deposition and alteration in the Mawrth Vallis region, Mars , 2012 .

[144]  Paul Mahaffy,et al.  Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays , 2012 .

[145]  N. Mangold Fluvial landforms on fresh impact ejecta on Mars , 2012 .

[146]  Jean-Pierre Bibring,et al.  Subsurface water and clay mineral formation during the early history of Mars , 2011, Nature.

[147]  M. Hirschmann,et al.  CO2 solubility in Martian basalts and Martian atmospheric evolution , 2011 .

[148]  S. Werner,et al.  Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars , 2011 .

[149]  Doris Breuer,et al.  Volcanic Outgassing of CO2 and H2O on Mars , 2011 .

[150]  B. Marty,et al.  Chondritic-like xenon trapped in Archean rocks: A possible signature of the ancient atmosphere , 2011 .

[151]  Nicolas Thomas,et al.  Seasonal Flows on Warm Martian Slopes , 2011, Science.

[152]  R. Clark,et al.  Evidence for Low-Grade Metamorphism, Hydrothermal Alteration, and Diagenesis on Mars from Phyllosilicate Mineral Assemblages , 2011 .

[153]  Simon J. Hook,et al.  Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data , 2011 .

[154]  V. Dehant,et al.  Effects of impacts on the atmospheric evolution: Comparison between Mars, Earth, and Venus , 2011 .

[155]  Masaki Ogawa,et al.  Numerical models of Martian mantle evolution induced by magmatism and solid‐state convection beneath stagnant lithosphere , 2011 .

[156]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[157]  A. Pourmand,et al.  Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo , 2011, Nature.

[158]  Bruce A. Campbell,et al.  Massive CO2 Ice Deposits Sequestered in the South Polar Layered Deposits of Mars , 2011, Science.

[159]  J. Grant,et al.  Late alluvial fan formation in southern Margaritifer Terra, Mars , 2011 .

[160]  O. Gasnault,et al.  Thermal history of Mars inferred from orbital geochemistry of volcanic provinces , 2011, Nature.

[161]  J. Head,et al.  Sequence and timing of conditions on early Mars , 2011 .

[162]  John F. Mustard,et al.  Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars , 2010 .

[163]  V. Hamilton,et al.  Geologic context of proposed chloride‐bearing materials on Mars , 2010 .

[164]  M. Grott,et al.  Crustal recycling, mantle dehydration, and the thermal evolution of Mars , 2010 .

[165]  B. Hynek,et al.  Ancient ocean on Mars supported by global distribution of deltas and valleys , 2010 .

[166]  J. Kasting,et al.  Photochemical and climate consequences of sulfur outgassing on early Mars , 2010 .

[167]  J. Head,et al.  Supraglacial and proglacial valleys on Amazonian Mars , 2010 .

[168]  O. Toon,et al.  The Formation of Martian River Valleys by Impacts , 2010 .

[169]  J. Grimwood,et al.  A Younger Age for ALH84001 and Its Geochemical Link to Shergottite Sources in Mars , 2010, Science.

[170]  W. Fischer,et al.  Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars , 2010 .

[171]  A. Pavlov,et al.  Fate of SO2 in the ancient Martian atmosphere: Implications for transient greenhouse warming , 2009 .

[172]  Craig O'Neill,et al.  Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites , 2009 .

[173]  D. Ming,et al.  Evidence for Calcium Carbonate at the Mars Phoenix Landing Site , 2009, Science.

[174]  D. Ming,et al.  Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site , 2009, Science.

[175]  F. McCubbin,et al.  Linking the Chassigny meteorite and the Martian surface rock Backstay: Insights into igneous crustal differentiation processes on Mars , 2009 .

[176]  N. Kaib,et al.  Building the terrestrial planets: Constrained accretion in the inner Solar System , 2009, 0905.3750.

[177]  S. Mojzsis,et al.  Microbial habitability of the Hadean Earth during the late heavy bombardment , 2009, Nature.

[178]  Harry Y. McSween,et al.  Elemental Composition of the Martian Crust , 2009, Science.

[179]  Stephanie C. Werner,et al.  The global martian volcanic evolutionary history , 2009 .

[180]  J. Head,et al.  Unique chronostratigraphic marker in depositional fan stratigraphy on Mars: Evidence for ca. 1.25 Ma gully activity and surficial meltwater origin , 2009 .

[181]  S. Murchie,et al.  Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis basin , 2009 .

[182]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[183]  Raymond E. Arvidson,et al.  A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter , 2009 .

[184]  E. A. Lima,et al.  Paleointensity of the ancient Martian magnetic field , 2008 .

[185]  A. Halliday A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[186]  C. Weitz,et al.  Opaline silica in young deposits on Mars , 2008 .

[187]  K. Righter,et al.  Oxygen fugacity in the Martian mantle controlled by carbon: New constraints from the nakhlite MIL 03346 , 2008 .

[188]  G. Cremonese,et al.  A NEW CHRONOLOGY FOR THE MOON AND MERCURY , 2008, 0903.5137.

[189]  M. Manga,et al.  Rapid decrease in Martian crustal magnetization in the Noachian era: Implications for the dynamo and climate of early Mars , 2008 .

[190]  H. Frey Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system , 2008 .

[191]  W. Kuang,et al.  Sudden termination of Martian dynamo?: Implications from subcritical dynamo simulations , 2008 .

[192]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[193]  O. Aharonson,et al.  Mega-impact formation of the Mars hemispheric dichotomy , 2008, Nature.

[194]  F. Nimmo,et al.  Implications of an impact origin for the martian hemispheric dichotomy , 2008, Nature.

[195]  M. Zuber,et al.  The Borealis basin and the origin of the martian crustal dichotomy , 2008, Nature.

[196]  M. Hirschmann,et al.  Ventilation of CO2 from a reduced mantle and consequences for the early Martian greenhouse , 2008 .

[197]  D. Ming,et al.  Detection of Silica-Rich Deposits on Mars , 2008, Science.

[198]  S. Werner The early martian evolution—Constraints from basin formation ages , 2008 .

[199]  Victoria E. Hamilton,et al.  Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data , 2008 .

[200]  J. Head,et al.  The timing of martian valley network activity : Constraints from buffered crater counting , 2008 .

[201]  Patrick Pinet,et al.  Identification of a new outflow channel on Mars in Syrtis Major Planum using HRSC/MEx data , 2008 .

[202]  Dieter Söll,et al.  Life without RNase P , 2008, Nature.

[203]  R. Wieler,et al.  Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals , 2007, Nature.

[204]  V. Debaille,et al.  Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars , 2007, Nature.

[205]  J. Michalski,et al.  Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars , 2007 .

[206]  S. McLennan,et al.  A ∼3.5 Ga record of water-limited, acidic weathering conditions on Mars , 2007 .

[207]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust , 2007 .

[208]  F. McCubbin,et al.  Alkalic parental magmas for chassignites? , 2007 .

[209]  D. Schrag,et al.  A Sulfur Dioxide Climate Feedback on Early Mars , 2007, Science.

[210]  B. Langlais,et al.  A polar magnetic paleopole associated with Apollinaris Patera Mars , 2007 .

[211]  V. Svetsov Atmospheric erosion and replenishment induced by impacts of cosmic bodies upon the Earth and Mars , 2007 .

[212]  J. G. Ward,et al.  Nature and Origin of the Hematite-Bearing Plains of Terra Meridiani Based on Analyses of Orbital and Mars Exploration Rover Data Sets , 2006 .

[213]  R. Pepin Atmospheres on the terrestrial planets: Clues to origin and evolution , 2006 .

[214]  D. Evans Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes , 2006, Nature.

[215]  Richard V. Morris,et al.  Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars , 2006 .

[216]  James H. Roberts,et al.  Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy , 2006 .

[217]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[218]  William V. Boynton,et al.  Mapping Mars geochemically , 2010 .

[219]  D. Mitchell,et al.  Unusual magnetic signature of the Hadriaca Patera Volcano: Implications for early Mars , 2006 .

[220]  Jeffrey R. Johnson,et al.  Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars , 2006 .

[221]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[222]  F Forget,et al.  Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity , 2006, Science.

[223]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[224]  P. Allemand,et al.  Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars , 2005 .

[225]  Alan D. Howard,et al.  An Intense Terminal Epoch of Widespread Fluvial Activity on Early Mars: 2. Increased Runoff and Paleolake Development , 2005 .

[226]  P. C. Hess,et al.  Possible formation of ancient crust on Mars through magma ocean processes , 2005 .

[227]  Alan D. Howard,et al.  An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits , 2005 .

[228]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[229]  A. Knoll,et al.  Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars , 2005 .

[230]  L. Borg,et al.  The early differentiation history of Mars from 182W-142Nd isotope systematics in the SNC meteorites , 2005 .

[231]  M. Malin,et al.  Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[232]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[233]  R. Greeley,et al.  Fluid lava flows in Gusev crater, Mars , 2005 .

[234]  William K. Hartmann,et al.  Martian cratering 8: Isochron refinement and the chronology of Mars , 2005 .

[235]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[236]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[237]  R. Elphic,et al.  Factors controlling ionospheric outflows as observed at intermediate altitudes , 2005 .

[238]  J. Papike,et al.  Comparative planetary mineralogy: Valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts , 2005 .

[239]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[240]  J. Chambers Planetary accretion in the inner Solar System , 2004 .

[241]  T. Kleine,et al.  182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars , 2004 .

[242]  J. Plescia Morphometric properties of Martian volcanoes , 2004 .

[243]  John F. Mustard,et al.  Recent ice ages on Mars , 2003, Nature.

[244]  W. Kiefer Melting in the martian mantle: Shergottite formation and implications for present‐day mantle convection on Mars , 2003 .

[245]  James W. Head,et al.  Oceans on Mars: An assessment of the observational evidence and possible fate , 2002 .

[246]  J. Laskar,et al.  Orbital forcing of the martian polar layered deposits , 2002, Nature.

[247]  J. Head,et al.  Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: Models and implications , 2002 .

[248]  John H. Jones,et al.  Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars , 2002 .

[249]  Graham Ryder,et al.  Mass flux in the ancient Earth‐Moon system and benign implications for the origin of life on Earth , 2002 .

[250]  J. Lunine,et al.  The origin of water on Mars , 2002 .

[251]  B. Marty,et al.  Signatures of early differentiation of Mars , 2002 .

[252]  F. Leblanc,et al.  Role of molecular species in pickup ion sputtering of the Martian atmosphere , 2002 .

[253]  F. Forget,et al.  Formation of Recent Martian Debris Flows by Melting of Near-Surface Ground Ice at High Obliquity , 2001, Science.

[254]  N. Cabrol,et al.  On the possibility of liquid water on present‐day Mars , 2001 .

[255]  Robert C. Anderson,et al.  Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars , 2001 .

[256]  J. Mustard,et al.  Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice , 2001, Nature.

[257]  R. Phillips,et al.  Mars' volatile and climate history , 2001, Nature.

[258]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[259]  R. Clayton,et al.  The Accretion, Composition and Early Differentiation of Mars , 2001 .

[260]  O. Eugster,et al.  Ages and Geologic Histories of Martian Meteorites , 2001 .

[261]  R. Clayton,et al.  Martian Volatiles: Isotopic Composition, Origin, and Evolution , 2001 .

[262]  David E. Smith,et al.  Ancient Geodynamics and Global-Scale Hydrology on Mars , 2001, Science.

[263]  Boris A. Ivanov,et al.  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[264]  M. Wadhwa,et al.  Redox State of Mars' Upper Mantle and Crust from Eu Anomalies in Shergottite Pyroxenes , 2001, Science.

[265]  M. Pinsonneault,et al.  Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties , 2000, astro-ph/0010346.

[266]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[267]  J W Head,et al.  Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. , 2000, Science.

[268]  M. Zuber,et al.  Degree-1 mantle convection and the crustal dichotomy on Mars , 2000 .

[269]  J. Morgan,et al.  Re-Os isotopic evidence for early differentiation of the Martian mantle , 2000 .

[270]  M. Golombek,et al.  Tectonics of the Tharsis Region of Mars: Insights from MGS Topography and Gravity , 2000 .

[271]  D J Des Marais,et al.  Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.

[272]  H. Wiesmann,et al.  The age of the carbonates in martian meteorite ALH84001. , 1999, Science.

[273]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[274]  E. M. Jones,et al.  Impact Erosion of Planetary Atmospheres: Some Surprising Results , 1999 .

[275]  J. Mavrogenes,et al.  THE RELATIVE EFFECTS OF PRESSURE, TEMPERATURE AND OXYGEN FUGACITY ON THE SOLUBILITY OF SULFIDE IN MAFIC MAGMAS , 1999 .

[276]  A. McEwen,et al.  Voluminous volcanism on early Mars revealed in Valles Marineris , 1999, Nature.

[277]  Bruce M. Jakosky,et al.  Atmospheric loss since the onset of the Martian geologic record: Combined role of impact erosion and sputtering , 1998 .

[278]  B. Jakosky,et al.  Impact of a paleomagnetic field on sputtering loss of Martian atmospheric argon and neon , 1997 .

[279]  Kenneth L. Tanaka Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars , 1997 .

[280]  Daniel Mège,et al.  Amounts of crustal stretching in Valles Marineris, Mars , 1996 .

[281]  T. Owen,et al.  Comets, impacts, and atmospheres. , 1995, Icarus.

[282]  Y L Yung,et al.  Loss of atmosphere from Mars due to solar wind-induced sputtering , 1995, Science.

[283]  M. Mellon,et al.  Chaotic obliquity and the nature of the Martian climate , 1995 .

[284]  B. Jakosky,et al.  Mars atmosphere loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape , 1994 .

[285]  J. Laskar,et al.  The chaotic obliquity of the planets , 1993, Nature.

[286]  R. Greeley,et al.  Magma Generation on Mars: Amounts, Rates, and Comparisons with Earth, Moon, and Venus , 1991, Science.

[287]  H. J. Melosh,et al.  Impact erosion of the primordial atmosphere of Mars , 1989, Nature.

[288]  J. Kasting,et al.  The case for a wet, warm climate on early Mars. , 1987, Icarus.

[289]  John H. Jones,et al.  Core formation in the shergottite parent body and comparison with the Earth , 1987 .

[290]  C. Russell,et al.  Upper limit on the intrinsic magnetic field of Venus , 1987 .

[291]  K. Towe Earth's Early Atmosphere. , 1987, Science.

[292]  Kenneth L. Tanaka The stratigraphy of Mars , 1986 .

[293]  JAMES C. G. Walker,et al.  Impact Erosion of Planetary Atmospheres , 1986 .

[294]  J. C. Walker,et al.  Global geochemical cycles of carbon, sulfur and oxygen. , 1986, Marine geology.

[295]  M. Carr,et al.  Possible precipitation of ice at low latitudes of Mars during periods of high obliquity , 1985, Nature.

[296]  B. Clark,et al.  The salts of Mars , 1981 .

[297]  W. Ward Climatic variations on Mars: 1. Astronomical theory of insolation , 1974 .

[298]  P. Goldreich,et al.  The obliquity of Venus , 1970 .

[299]  B. Murray,et al.  Behavior of Carbon Dioxide and Other Volatiles on Mars , 1966, Science.

[300]  D. Miller SECTION B--PHYSICS. , 1903, Science.

[301]  C. Cockell The subsurface habitability of terrestrial rocky planets: Mars , 2014 .

[302]  Kevin,et al.  Goals, Objectives, and Investigations for Venus Exploration , 2014 .

[303]  J. Harder,et al.  Comparative Climatology of Terrestrial Planets , 2014 .

[304]  O. Gasnault,et al.  Long-Term Evolution of the Martian Crust-Mantle System , 2013 .

[305]  R. Morris,et al.  Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments , 2013 .

[306]  S. Maurice,et al.  Quantitative Assessments of the Martian Hydrosphere , 2013 .

[307]  D. Montgomery,et al.  The dual nature of the martian crust: Young lavas and old clastic materials , 2013 .

[308]  S. McLennan,et al.  Geochemical Reservoirs and Timing of Sulfur Cycling on Mars , 2013 .

[309]  O. Toon,et al.  The Effects of Impacts on the Climates of Terrestrial Planets , 2013 .

[310]  J. Grotzinger,et al.  The Sedimentary Rock Record of Mars: Distribution, Origins, and Global Stratigraphy , 2012 .

[311]  L. Taylor,et al.  Evolution of the martian mantle inferred from the 187Re–187Os isotope and highly siderophile element abundance systematics of shergottite meteorites , 2012 .

[312]  E. Engwall,et al.  Earth’s ionospheric outflow dominated by hidden cold plasma , 2009 .

[313]  Philip R. Christensen,et al.  Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration , 2007 .

[314]  W. Hartmann,et al.  Possible long-term decline in impact rates: 2. Lunar impact-melt data regarding impact history , 2007 .

[315]  V. Dehant,et al.  Rotation of the terrestrial planets , 2007 .

[316]  K. Zahnle,et al.  Thick and thin models of the evolution of carbon dioxide on Mars , 2006 .

[317]  David J. Stevenson,et al.  Styles of mantle convection and their influence on planetary evolution , 2003 .

[318]  V. V. Shuvalov,et al.  Atmospheric erosion and radiation impulse induced by impacts , 2002 .

[319]  J. Head,et al.  Northern lowlands of Mars: Evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period , 2002 .

[320]  T. Ahrens Impact erosion of terrestrial planetary atmospheres , 1993 .

[321]  R. Pepin Origin of Noble Gases in the Terrestrial Planets , 1992 .

[322]  P. Ulmer,et al.  The graphite-COH fluid equilibrium in P, T, $$f_{O_2 } $$ space , 1991 .

[323]  D. H. Scott,et al.  Geologic map of Mars , 1976 .