Tonotopic mapping of human auditory cortex

Since the early days of functional magnetic resonance imaging (fMRI), retinotopic mapping emerged as a powerful and widely-accepted tool, allowing the identification of individual visual cortical fields and furthering the study of visual processing. In contrast, tonotopic mapping in auditory cortex proved more challenging primarily because of the smaller size of auditory cortical fields. The spatial resolution capabilities of fMRI have since advanced, and recent reports from our labs and several others demonstrate the reliability of tonotopic mapping in human auditory cortex. Here we review the wide range of stimulus procedures and analysis methods that have been used to successfully map tonotopy in human auditory cortex. We point out that recent studies provide a remarkably consistent view of human tonotopic organisation, although the interpretation of the maps continues to vary. In particular, there remains controversy over the exact orientation of the primary gradients with respect to Heschl's gyrus, which leads to different predictions about the location of human A1, R, and surrounding fields. We discuss the development of this debate and argue that literature is converging towards an interpretation that core fields A1 and R fold across the rostral and caudal banks of Heschl's gyrus, with tonotopic gradients laid out in a distinctive V-shaped manner. This suggests an organisation that is largely homologous with non-human primates. This article is part of a Special Issue entitled Human Auditory Neuroimaging.

[1]  David A. Leopold,et al.  Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey , 2010, NeuroImage.

[2]  G. Békésy The Vibration of the Cochlear Partition in Anatomical Preparations and in Models of the Inner Ear , 1949 .

[3]  P. Teale,et al.  Alterations in tonotopy and auditory cerebral asymmetry in schizophrenia , 2002, Biological Psychiatry.

[4]  D. Bendor,et al.  Neural response properties of primary, rostral, and rostrotemporal core fields in the auditory cortex of marmoset monkeys. , 2008, Journal of neurophysiology.

[5]  J. Rauschecker,et al.  Functional specialization of medial auditory belt cortex in the alert rhesus monkey. , 2009, Journal of neurophysiology.

[6]  K. Lehnertz,et al.  Neuromagnetic evidence of an amplitopic organization of the human auditory cortex. , 1989, Electroencephalography and clinical neurophysiology.

[7]  S. Kuriki,et al.  Neuromagnetic study of the auditory responses in right and left hemispheres of the human brain evoked by pure tones and speech sounds , 2004, Experimental Brain Research.

[8]  B. Hu Functional organization of lemniscal and nonlemniscal auditory thalamus , 2003, Experimental Brain Research.

[9]  Elia Formisano,et al.  Processing of Natural Sounds in Human Auditory Cortex: Tonotopy, Spectral Tuning, and Relation to Voice Sensitivity , 2012, The Journal of Neuroscience.

[10]  Klaus Scheffler,et al.  Spatial representations of temporal and spectral sound cues in human auditory cortex , 2013, Cortex.

[11]  K. Scheffler,et al.  Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI , 1998, Hearing Research.

[12]  Klaus Scheffler,et al.  Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence , 2006, NeuroImage.

[13]  The Oxford handbook of auditory science , 2015 .

[14]  M. Mishkin,et al.  Spontaneous High-Gamma Band Activity Reflects Functional Organization of Auditory Cortex in the Awake Macaque , 2012, Neuron.

[15]  David K Ryugo,et al.  Primary innervation of the avian and mammalian cochlear nucleus , 2003, Brain Research Bulletin.

[16]  T. Moser,et al.  Structure and function of cochlear afferent innervation , 2010, Current opinion in otolaryngology & head and neck surgery.

[17]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Lewis,et al.  Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus , 2005, The Journal of comparative neurology.

[19]  Christian J. Sumner,et al.  Examining the role of frequency specificity in the enhancement and suppression of human cortical activity by auditory selective attention , 2009, Hearing Research.

[20]  Sonja Grün,et al.  Cross-frequency interaction of the eye-movement related LFP signals in V1 of freely viewing monkeys , 2012, Front. Syst. Neurosci..

[21]  Brian H Scott,et al.  Transformation of temporal processing across auditory cortex of awake macaques. , 2011, Journal of neurophysiology.

[22]  François Lazeyras,et al.  FMRI evidence for activation of multiple cortical regions in the primary auditory cortex of deaf subjects users of multichannel cochlear implants. , 2004, Cerebral cortex.

[23]  Colin Humphries,et al.  Tonotopic organization of human auditory cortex , 2010, NeuroImage.

[24]  Hubert H. Lim,et al.  Frequency representation within the human brain: Stability versus plasticity , 2013, Scientific reports.

[25]  F. Dick,et al.  In Vivo Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas , 2012, The Journal of Neuroscience.

[26]  B Lütkenhöner,et al.  Magnetoencephalographic studies of functional organization and plasticity of the human auditory cortex. , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[27]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M Hoke,et al.  Tonotopic organization of the auditory cortex: pitch versus frequency representation. , 1989, Science.

[29]  William F Christensen,et al.  Silent Functional Magnetic Resonance Imaging (fMRI) of Tonotopicity and Stimulus Intensity Coding in Human Primary Auditory Cortex , 2004, The Laryngoscope.

[30]  Carrie J. Scarff,et al.  The effect of MR scanner noise on auditory cortex activity using fMRI , 2004, Human brain mapping.

[31]  E G Jones,et al.  Subdivisions of macaque monkey auditory cortex revealed by calcium‐binding protein immunoreactivity , 1995, The Journal of comparative neurology.

[32]  B Lütkenhöner,et al.  Studies of tonotopy based on wave N100 of the auditory evoked field are problematic , 2003, NeuroImage.

[33]  A. T. Smith,et al.  Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. , 2001, Cerebral cortex.

[34]  L. Collet,et al.  Effect of stimulus frequency and stimulation site on the N1m response of the human auditory cortex , 2004, Hearing Research.

[35]  M S Gazzaniga,et al.  Organization of the human brain. , 1989, Science.

[36]  Wietske van der Zwaag,et al.  Where sound position influences sound object representations: A 7-T fMRI study , 2011, NeuroImage.

[37]  J. Kaas,et al.  Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans , 2001, The Journal of comparative neurology.

[38]  Claude Alain,et al.  Functional imaging of human auditory cortex , 2009, Current opinion in otolaryngology & head and neck surgery.

[39]  F. C. Hellweg,et al.  Representation of the cochlea in the neocortex of guinea pigs , 1977, Experimental Brain Research.

[40]  L. Collet,et al.  Plasticity of tonotopic maps in humans: influence of hearing loss, hearing aids and cochlear implants , 2010, Acta oto-laryngologica.

[41]  P. M. Rossini,et al.  Neuromagnetic somatosensory homunculus: A non-invasive approach in humans , 1991, Neuroscience Letters.

[42]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[43]  D. Weinberger,et al.  Organization of the human motor system as studied by functional magnetic resonance imaging. , 1999, European journal of radiology.

[44]  M. Sutter Shapes and level tolerances of frequency tuning curves in primary auditory cortex: quantitative measures and population codes. , 2000, Journal of neurophysiology.

[45]  Paul Albert Fuchs,et al.  Oxford Handbook of Auditory Science The Ear , 2010 .

[46]  B. Ross,et al.  Auditory afterimage: Tonotopic representation in the auditory cortex , 1998, NeuroReport.

[47]  Risto Näätänen,et al.  Sustained fields of tones and glides reflect tonotopy of the auditory cortex , 1995, Neuroreport.

[48]  Vanessa Sluming,et al.  Heschl gyrus and its included primary auditory cortex: Structural MRI studies in healthy and diseased subjects , 2008, Journal of magnetic resonance imaging : JMRI.

[49]  E. G. Jones,et al.  Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys , 1997, The Journal of comparative neurology.

[50]  N Suga,et al.  Disproportionate tonotopic representation for processing CF-FM sonar signals in the mustache bat auditory cortex. , 1976, Science.

[51]  G. Recanzone,et al.  Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. , 2000, Journal of neurophysiology.

[52]  Michael A. Silver,et al.  Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex , 2010, NeuroImage.

[53]  J. Kaas,et al.  Subdivisions and connections of auditory cortex in owl monkeys , 1992, The Journal of comparative neurology.

[54]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[55]  Peter G. Morris,et al.  fMRI at 1.5, 3 and 7 T: Characterising BOLD signal changes , 2009, NeuroImage.

[56]  Li Sun,et al.  Newcastle University E-prints Citation for Published Item: Further Information on Publisher Website: Publishers Copyright Statement: Use Policy: Characterisation of the Bold Response Time Course at Different Levels of the Auditory Pathway in Non-human Primates , 2022 .

[57]  D. Yves von Cramon,et al.  Is It Tonotopy after All? , 2002, NeuroImage.

[58]  D. P. Phillips,et al.  Representation of the cochlea in primary auditory cortex of the ferret (Mustela putorius) , 1986, Hearing Research.

[59]  Thomas Elbert,et al.  Tonotopic organization of the human auditory cortex probed with frequency-modulated tones , 2004, Hearing Research.

[60]  R. Reale,et al.  Tonotopic organization in auditory cortex of the cat , 1980, The Journal of comparative neurology.

[61]  Christo Pantev,et al.  Tonotopic representation of missing fundamental complex sounds in the human auditory cortex , 2003, The European journal of neuroscience.

[62]  Blaise Yvert,et al.  Simultaneous intracerebral EEG recordings of early auditory thalamic and cortical activity in human , 2002, The European journal of neuroscience.

[63]  E. Diesch,et al.  Magnetic fields elicited by tones and vowel formants reveal tonotopy and nonlinear summation of cortical activation. , 1997, Psychophysiology.

[64]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[65]  R. Goebel,et al.  Mirror-Symmetric Tonotopic Maps in Human Primary Auditory Cortex , 2003, Neuron.

[66]  C. Economo,et al.  Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede , 1930 .

[67]  T. Elbert,et al.  Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. , 1995, Electroencephalography and clinical neurophysiology.

[68]  Stephen A. Engel,et al.  The development and use of phase-encoded functional MRI designs , 2012, NeuroImage.

[69]  Paul J. Abbas,et al.  A chronic microelectrode investigation of the tonotopic organization of human auditory cortex , 1996, Brain Research.

[70]  C. Elberling,et al.  Auditory magnetic fields: source location and 'tonotopical organization' in the right hemisphere of the human brain. , 1982, Scandinavian audiology.

[71]  Klaus Scheffler,et al.  Amplitopicity of the Human Auditory Cortex: An fMRI Study , 2002, NeuroImage.

[72]  S. Clarke,et al.  Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas , 1997, NeuroImage.

[73]  Dave R. M. Langers,et al.  Representation of lateralization and tonotopy in primary versus secondary human auditory cortex , 2007, NeuroImage.

[74]  R Llinás,et al.  Magnetic localization of neuronal activity in the human brain. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[76]  N. Logothetis,et al.  Functional Imaging Reveals Numerous Fields in the Monkey Auditory Cortex , 2006, PLoS biology.

[77]  Larry E. Roberts,et al.  Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus , 2006, NeuroImage.

[78]  P. van Dijk,et al.  Mapping the Tonotopic Organization in Human Auditory Cortex with Minimally Salient Acoustic Stimulation , 2011, Cerebral cortex.

[79]  Nikolaus Weiskopf,et al.  Using high-resolution quantitative mapping of R1 as an index of cortical myelination , 2014, NeuroImage.

[80]  Alan R. Palmer,et al.  The Auditory Brain , 2010 .

[81]  J. Kaas,et al.  Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys , 1993, The Journal of comparative neurology.

[82]  F. Perrin,et al.  Tonotopic organization of the human auditory cortex: N100 topography and multiple dipole model analysis. , 1995, Electroencephalography and clinical neurophysiology.

[83]  Kurt E. Weaver,et al.  Functional characteristics of auditory cortex in the blind , 2009, Behavioural Brain Research.

[84]  J. Kaas,et al.  Auditory cortex in the grey squirrel: Tonotopic organization and architectonic fields , 1976, The Journal of comparative neurology.

[85]  David S Vicario,et al.  Auditory topography and temporal response dynamics of canary caudal telencephalon. , 2006, Journal of neurobiology.

[86]  Dave R M Langers,et al.  Assessment of tonotopically organised subdivisions in human auditory cortex using volumetric and surface‐based cortical alignments , 2013, Human brain mapping.

[87]  M M Merzenich,et al.  Representation of cochlea within primary auditory cortex in the cat. , 1975, Journal of neurophysiology.

[88]  S. Francis,et al.  Within-Digit Functional Parcellation of Brodmann Areas of the Human Primary Somatosensory Cortex Using Functional Magnetic Resonance Imaging at 7 Tesla , 2012, The Journal of Neuroscience.

[89]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[90]  J. Rauschecker,et al.  Processing of complex sounds in the macaque nonprimary auditory cortex. , 1995, Science.

[91]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[92]  E. Yund,et al.  Attentional modulation of human auditory cortex , 2004, Nature Neuroscience.

[93]  Jaeseung Jeong,et al.  Auditory Imagery Modulates Frequency-specific Areas in the Human Auditory Cortex , 2013, Journal of Cognitive Neuroscience.

[94]  Y Yang,et al.  A silent event‐related functional MRI technique for brain activation studies without interference of scanner acoustic noise , 2000, Magnetic resonance in medicine.

[95]  Nikos K Logothetis,et al.  Optimizing the imaging of the monkey auditory cortex: sparse vs. continuous fMRI. , 2009, Magnetic resonance imaging.

[96]  Isao Hashimoto,et al.  Human Tonotopic Maps and their Rapid Task-Related Changes Studied by Magnetic Source Imaging , 2007, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[97]  T. Elbert,et al.  Reorganization of auditory cortex in tinnitus. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[98]  G. Mangun,et al.  Tonotopy in human auditory cortex examined with functional magnetic resonance imaging , 1997, Human brain mapping.

[99]  Teemu Rinne,et al.  Functional Maps of Human Auditory Cortex: Effects of Acoustic Features and Attention , 2009, PloS one.

[100]  Karl J. Friston,et al.  Experience–dependent modulation of tonotopic neural responses in human auditory cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[101]  Kevin C. Chan,et al.  High fidelity tonotopic mapping using swept source functional magnetic resonance imaging , 2012, NeuroImage.

[102]  Günter Ehret,et al.  The Central Auditory System , 1996 .

[103]  S. Williamson,et al.  Tonotopic organization of human auditory association cortex , 1994, Brain Research.

[104]  Stephanie Clarke,et al.  Architecture, Connectivity, and Transmitter Receptors of Human Auditory Cortex , 2012 .

[105]  Richard Ragot,et al.  Tonotopic cortical representation of periodic complex sounds , 2003, Human brain mapping.

[106]  R. Goebel,et al.  Hearing Illusory Sounds in Noise: Sensory-Perceptual Transformations in Primary Auditory Cortex , 2007, The Journal of Neuroscience.

[107]  Björn Capsius,et al.  Response patterns and their relationship to frequency analysis in auditory forebrain centers of a songbird , 1999, Hearing Research.

[108]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[109]  H. Helmholtz,et al.  On the Sensations of Tone as a Physiological Basis for the Theory of Music , 2005 .

[110]  T. Flash,et al.  Negative blood oxygenation level dependent homunculus and somatotopic information in primary motor cortex and supplementary motor area , 2012, Proceedings of the National Academy of Sciences.

[111]  Richard S. J. Frackowiak,et al.  Human Primary Auditory Cortex Follows the Shape of Heschl's Gyrus , 2011, The Journal of Neuroscience.

[112]  F Ottaviani,et al.  Tonotopic organization of human auditory cortex analyzed by SPET. , 1997, Audiology : official organ of the International Society of Audiology.

[113]  R. Kakigi,et al.  The auditory evoked magnetic fields to very high frequency tones , 2002, Neuroscience.

[114]  K. Kandler,et al.  Tonotopic reorganization of developing auditory brainstem circuits , 2009, Nature Neuroscience.

[115]  J. Kaas,et al.  Connections of primary auditory cortex in the new world monkey, Saguinus , 1989, The Journal of comparative neurology.

[116]  R. Bowtell,et al.  “sparse” temporal sampling in auditory fMRI , 1999, Human brain mapping.

[117]  K. Lehnertz,et al.  Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. , 1988, Electroencephalography and clinical neurophysiology.

[118]  Joseph E. LeDoux,et al.  Oxford Handbook of Auditory Science The Auditory Brain , 2012 .

[119]  R. Burkard,et al.  The functional anatomy of the normal human auditory system: responses to 0.5 and 4.0 kHz tones at varied intensities. , 1999, Cerebral cortex.

[120]  Y. Cohen,et al.  Representation of frequency in the primary auditory field of the barn owl forebrain. , 1996, Journal of neurophysiology.

[121]  Gregory Hickok,et al.  Orthogonal acoustic dimensions define auditory field maps in human cortex , 2012, Proceedings of the National Academy of Sciences.

[122]  Essa Yacoub,et al.  Spatial organization of frequency preference and selectivity in the human inferior colliculus , 2012, Nature Communications.

[123]  E. Glaser,et al.  Tonotopic organization of rabbit auditory cortex , 1982, Experimental Neurology.

[124]  R. Weisskoff,et al.  Improved auditory cortex imaging using clustered volume acquisitions , 1999, Human brain mapping.

[125]  N. Geschwind,et al.  Human Brain: Cytoarchitectonic Left-Right Asymmetries in the Temporal Speech Region , 1978 .

[126]  Amir Amedi,et al.  Extensive Cochleotopic Mapping of Human Auditory Cortical Fields Obtained with Phase-Encoding fMRI , 2011, PloS one.

[127]  T. H. Le,et al.  Functional MRI of human auditory cortex using block and event‐related designs , 2001, Magnetic resonance in medicine.

[128]  Amir Amedi,et al.  Disentangling unisensory and multisensory components in audiovisual integration using a novel multifrequency fMRI spectral analysis , 2010, NeuroImage.

[129]  Almut Engelien,et al.  Short-term plasticity of the human auditory cortex , 1999, Brain Research.

[130]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[131]  Yihong Yang,et al.  Physiological Mapping of Human Auditory Cortices with a Silent Event-Related fMRI Technique , 2002, NeuroImage.

[132]  M Hoke,et al.  The auditory evoked sustained field: origin and frequency dependence. , 1994, Electroencephalography and clinical neurophysiology.

[133]  Matthias M. Müller,et al.  Expansion of the Tonotopic Area in the Auditory Cortex of the Blind , 2002, The Journal of Neuroscience.

[134]  Mathieu Ducros,et al.  Function and connectivity in human primary auditory cortex: a combined fMRI and DTI study at 3 Tesla. , 2007, Cerebral cortex.

[135]  P. Heil,et al.  Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography , 1997, Journal of Comparative Physiology A.

[136]  Jon H Kaas,et al.  Topographic Maps are Fundamental to Sensory Processing , 1997, Brain Research Bulletin.

[137]  B M Clopton,et al.  Tonotopic organization: review and analysis. , 1974, Brain research.

[138]  R J Ilmoniemi,et al.  Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. , 1993, Psychophysiology.

[139]  Peter Herscovitch,et al.  Tonotopic organization in human auditory cortex revealed by positron emission tomography , 1985, Hearing Research.

[140]  I. H. Coriat,et al.  Histological Studies on the Localization of Cerebral Function , 1906 .

[141]  M Don,et al.  Spatio-temporal source modeling of evoked potentials to acoustic and cochlear implant stimulation. , 1993, Electroencephalography and clinical neurophysiology.

[142]  D. Pandya,et al.  Architectonic analysis of the auditory‐related areas of the superior temporal region in human brain , 2007, The Journal of comparative neurology.

[143]  R. Ragot,et al.  Perception of complex sounds: N1 latency codes pitch and topography codes spectra , 2000, Clinical Neurophysiology.

[144]  Anna R. Chambers,et al.  Robustness of Cortical Topography across Fields, Laminae, Anesthetic States, and Neurophysiological Signal Types , 2012, The Journal of Neuroscience.

[145]  G. Ehret,et al.  The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation , 1997, Journal of Comparative Physiology A.

[146]  A. Dale,et al.  Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. , 2004, Journal of neurophysiology.

[147]  E. Cassetta,et al.  Tonotopic cortical changes following stapes substitution in otosclerotic patients: A magnetoencephalographic study , 2000, Human brain mapping.

[148]  Timothy D. Griffiths,et al.  A unified framework for the organization of the primate auditory cortex , 2013, Front. Syst. Neurosci..

[149]  F. Tecchio,et al.  Neuroplasticity of auditory cortex after stape surgery for otosclerosis: a magnetoencephalographic study. , 2003, Acta otorhinolaryngologica Italica : organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale.

[150]  Dave R. M. Langers,et al.  Tinnitus does not require macroscopic tonotopic map reorganization , 2012, Front. Syst. Neurosci..

[151]  Lee M. Miller,et al.  Tuning In to Sound: Frequency-Selective Attentional Filter in Human Primary Auditory Cortex , 2013, The Journal of Neuroscience.

[152]  A. Møller,et al.  The non-classical auditory pathways are involved in hearing in children but not in adults , 2002, Neuroscience Letters.

[153]  O. Bertrand,et al.  Evidence of a Tonotopic Organization of the Auditory Cortex in Cochlear Implant Users , 2007, The Journal of Neuroscience.

[154]  Bernd Lütkenhöner,et al.  High-Precision Neuromagnetic Study of the Functional Organization of the Human Auditory Cortex , 1998, Audiology and Neurotology.