BV Quantization
暂无分享,去创建一个
[1] A. Cattaneo. Phase space for gravity with boundaries , 2023, 2307.04666.
[2] A. Losev. TQFT, homological algebra and elements of K. Saito's theory of Primitive form: an attempt of mathematical text written by mathematical physicist , 2023, 2301.01390.
[3] J. Rosenblatt,et al. Quantization , 2022, What Is a Quantum Field Theory?.
[4] James Michael MacFarlane,et al. Existence , 2014, Encyclopedia of African Religions and Philosophy.
[5] I. Sachs,et al. QFT with stubs , 2021, Journal of High Energy Physics.
[6] A. S. Cattaneo,et al. General Relativity and the AKSZ Construction , 2020, Communications in Mathematical Physics.
[7] Nima Moshayedi. Formal Global AKSZ Gauge Observables and Generalized Wilson Surfaces , 2020, Annales Henri Poincaré.
[8] M. Roček,et al. Homotopy algebras of differential (super)forms in three and four dimensions , 2017, Letters in Mathematical Physics.
[9] N. Reshetikhin,et al. A Cellular Topological Field Theory , 2017, Communications in Mathematical Physics.
[10] K. Rejzner. Perturbative Algebraic Quantum Field Theory: An Introduction for Mathematicians , 2016 .
[11] N. Reshetikhin,et al. Perturbative Quantum Gauge Theories on Manifolds with Boundary , 2015, 1507.01221.
[12] P. Etingof,et al. Perspectives in Representation Theory , 2014 .
[13] P. Mnev. A Construction of Observables for AKSZ Sigma Models , 2012, 1212.5751.
[14] D. Kazhdan,et al. The classical master equation , 2012, 1212.1631.
[15] A. S. Cattaneo,et al. Classical BV Theories on Manifolds with Boundary , 2011, 1201.0290.
[16] K. Costello. Renormalization and Effective Field Theory , 2011 .
[17] A. Alekseev,et al. One-Dimensional Chern-Simons Theory , 2010, 1005.2111.
[18] I. Tyutin. Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism , 2008, 0812.0580.
[19] A. Cattaneo,et al. Remarks on Chern–Simons Invariants , 2008, 0811.2045.
[20] P. Mnev. Discrete BF theory , 2008, 0809.1160.
[21] K. Costello. Renormalisation and the Batalin-Vilkovisky formalism , 2007, 0706.1533.
[22] V. Alexandrov,et al. On Pure Spinor Superfield Formalism , 2007, 0705.2191.
[23] A. Losev. FROM BEREZIN INTEGRAL TO BATALIN–VILKOVISKY FORMALISM: A MATHEMATICAL PHYSICIST'S POINT OF VIEW , 2007 .
[24] Dmitry Roytenberg. AKSZ–BV Formalism and Courant Algebroid-Induced Topological Field Theories , 2006, hep-th/0608150.
[25] D. Krotov,et al. Quantum field theory as effective BV theory from Chern–Simons , 2006, hep-th/0603201.
[26] P. Ševera. On the Origin of the BV Operator on Odd Symplectic Supermanifolds , 2005, math/0506331.
[27] A. Cattaneo,et al. Wilson Surfaces and Higher Dimensional Knot Invariants , 2002, math-ph/0210037.
[28] H. Khudaverdian. Semidensities on Odd Symplectic Supermanifolds , 2000, math/0012256.
[29] M. Kontsevich,et al. Homological mirror symmetry and torus fibrations , 2000, math/0011041.
[30] D. Sullivan,et al. String Topology , 1999, math/9911159.
[31] Pierre Deligne,et al. Quantum Fields and Strings: A Course for Mathematicians , 1999 .
[32] G. Felder,et al. A Path Integral Approach¶to the Kontsevich Quantization Formula , 1999, math/9902090.
[33] P. Michor,et al. The Convenient Setting of Global Analysis , 1997 .
[34] Y. Kosmann-Schwarzbach. Exact Gerstenhaber algebras and Lie bialgebroids , 1995 .
[35] M. Kontsevich,et al. The Geometry of the Master Equation and Topological Quantum Field Theory , 1995, hep-th/9502010.
[36] D. Anselmi. Removal of divergences with the Batalin-Vilkovisky formalism , 1994 .
[37] M. Henneaux,et al. Local BRST cohomology in the antifield formalism: II. Application to Yang-Mills theory , 1994, hep-th/9405194.
[38] M. Henneaux,et al. Local BRST cohomology in the antifield formalism: I. General theorems , 1994, hep-th/9405109.
[39] E. Getzler. Batalin-Vilkovisky algebras and two-dimensional topological field theories , 1992, hep-th/9212043.
[40] Marc Henneaux,et al. Quantization of Gauge Systems , 1992 .
[41] J. Stasheff,et al. Introduction to SH Lie algebras for physicists , 1992, hep-th/9209099.
[42] B. Zwiebach. Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation , 1992, hep-th/9206084.
[43] A. Schwarz. Geometry of Batalin-Vilkovisky quantization , 1992, hep-th/9205088.
[44] O. M. Khudaverdian. Geometry of superspace with even and odd brackets , 1991 .
[45] M. Henneaux. Elimination of the auxiliary fields in the antifield formalism , 1990 .
[46] E. Witten. A Note on the Antibracket Formalism , 1990 .
[47] M. Henneaux,et al. Existence, uniqueness and cohomology of the classical BRST charge with ghosts of ghosts , 1989 .
[48] G. Zuckerman. ACTION PRINCIPLES AND GLOBAL GEOMETRY , 1987 .
[49] I. Batalin,et al. Quantization of Gauge Theories with Linearly Dependent Generators , 1983 .
[50] I. Batalin,et al. Gauge Algebra and Quantization , 1981 .
[51] Marjorie Batchelor. The structure of supermanifolds , 1979 .
[52] V. N. Popov,et al. Feynman Diagrams for the Yang-Mills Field , 1967 .
[53] Harold Erbin. BRST Quantization , 2021, String Field Theory.
[54] P. Mn¨ev. Notes on Simplicial Bf Theory , 2006 .
[55] G. Naber,et al. Encyclopedia of Mathematical Physics , 2006 .
[56] J. Stashe. The (secret?) Homological Algebra of the Batalin-vilkovisky Approach , 1997 .
[57] Ian Anderson,et al. Introduction to the Variational Bicomplex , 1992 .
[58] J. Zinn-Justin,et al. Renormalization of Gauge Theories , 2018, Quantum Field Theory.
[59] H. Epstein,et al. The Role of locality in perturbation theory , 1973 .