BV Quantization

This note gives an overview of the BV formalism in its various incarnations and applications.

[1]  A. Cattaneo Phase space for gravity with boundaries , 2023, 2307.04666.

[2]  A. Losev TQFT, homological algebra and elements of K. Saito's theory of Primitive form: an attempt of mathematical text written by mathematical physicist , 2023, 2301.01390.

[3]  J. Rosenblatt,et al.  Quantization , 2022, What Is a Quantum Field Theory?.

[4]  James Michael MacFarlane,et al.  Existence , 2014, Encyclopedia of African Religions and Philosophy.

[5]  I. Sachs,et al.  QFT with stubs , 2021, Journal of High Energy Physics.

[6]  A. S. Cattaneo,et al.  General Relativity and the AKSZ Construction , 2020, Communications in Mathematical Physics.

[7]  Nima Moshayedi Formal Global AKSZ Gauge Observables and Generalized Wilson Surfaces , 2020, Annales Henri Poincaré.

[8]  M. Roček,et al.  Homotopy algebras of differential (super)forms in three and four dimensions , 2017, Letters in Mathematical Physics.

[9]  N. Reshetikhin,et al.  A Cellular Topological Field Theory , 2017, Communications in Mathematical Physics.

[10]  K. Rejzner Perturbative Algebraic Quantum Field Theory: An Introduction for Mathematicians , 2016 .

[11]  N. Reshetikhin,et al.  Perturbative Quantum Gauge Theories on Manifolds with Boundary , 2015, 1507.01221.

[12]  P. Etingof,et al.  Perspectives in Representation Theory , 2014 .

[13]  P. Mnev A Construction of Observables for AKSZ Sigma Models , 2012, 1212.5751.

[14]  D. Kazhdan,et al.  The classical master equation , 2012, 1212.1631.

[15]  A. S. Cattaneo,et al.  Classical BV Theories on Manifolds with Boundary , 2011, 1201.0290.

[16]  K. Costello Renormalization and Effective Field Theory , 2011 .

[17]  A. Alekseev,et al.  One-Dimensional Chern-Simons Theory , 2010, 1005.2111.

[18]  I. Tyutin Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism , 2008, 0812.0580.

[19]  A. Cattaneo,et al.  Remarks on Chern–Simons Invariants , 2008, 0811.2045.

[20]  P. Mnev Discrete BF theory , 2008, 0809.1160.

[21]  K. Costello Renormalisation and the Batalin-Vilkovisky formalism , 2007, 0706.1533.

[22]  V. Alexandrov,et al.  On Pure Spinor Superfield Formalism , 2007, 0705.2191.

[23]  A. Losev FROM BEREZIN INTEGRAL TO BATALIN–VILKOVISKY FORMALISM: A MATHEMATICAL PHYSICIST'S POINT OF VIEW , 2007 .

[24]  Dmitry Roytenberg AKSZ–BV Formalism and Courant Algebroid-Induced Topological Field Theories , 2006, hep-th/0608150.

[25]  D. Krotov,et al.  Quantum field theory as effective BV theory from Chern–Simons , 2006, hep-th/0603201.

[26]  P. Ševera On the Origin of the BV Operator on Odd Symplectic Supermanifolds , 2005, math/0506331.

[27]  A. Cattaneo,et al.  Wilson Surfaces and Higher Dimensional Knot Invariants , 2002, math-ph/0210037.

[28]  H. Khudaverdian Semidensities on Odd Symplectic Supermanifolds , 2000, math/0012256.

[29]  M. Kontsevich,et al.  Homological mirror symmetry and torus fibrations , 2000, math/0011041.

[30]  D. Sullivan,et al.  String Topology , 1999, math/9911159.

[31]  Pierre Deligne,et al.  Quantum Fields and Strings: A Course for Mathematicians , 1999 .

[32]  G. Felder,et al.  A Path Integral Approach¶to the Kontsevich Quantization Formula , 1999, math/9902090.

[33]  P. Michor,et al.  The Convenient Setting of Global Analysis , 1997 .

[34]  Y. Kosmann-Schwarzbach Exact Gerstenhaber algebras and Lie bialgebroids , 1995 .

[35]  M. Kontsevich,et al.  The Geometry of the Master Equation and Topological Quantum Field Theory , 1995, hep-th/9502010.

[36]  D. Anselmi Removal of divergences with the Batalin-Vilkovisky formalism , 1994 .

[37]  M. Henneaux,et al.  Local BRST cohomology in the antifield formalism: II. Application to Yang-Mills theory , 1994, hep-th/9405194.

[38]  M. Henneaux,et al.  Local BRST cohomology in the antifield formalism: I. General theorems , 1994, hep-th/9405109.

[39]  E. Getzler Batalin-Vilkovisky algebras and two-dimensional topological field theories , 1992, hep-th/9212043.

[40]  Marc Henneaux,et al.  Quantization of Gauge Systems , 1992 .

[41]  J. Stasheff,et al.  Introduction to SH Lie algebras for physicists , 1992, hep-th/9209099.

[42]  B. Zwiebach Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation , 1992, hep-th/9206084.

[43]  A. Schwarz Geometry of Batalin-Vilkovisky quantization , 1992, hep-th/9205088.

[44]  O. M. Khudaverdian Geometry of superspace with even and odd brackets , 1991 .

[45]  M. Henneaux Elimination of the auxiliary fields in the antifield formalism , 1990 .

[46]  E. Witten A Note on the Antibracket Formalism , 1990 .

[47]  M. Henneaux,et al.  Existence, uniqueness and cohomology of the classical BRST charge with ghosts of ghosts , 1989 .

[48]  G. Zuckerman ACTION PRINCIPLES AND GLOBAL GEOMETRY , 1987 .

[49]  I. Batalin,et al.  Quantization of Gauge Theories with Linearly Dependent Generators , 1983 .

[50]  I. Batalin,et al.  Gauge Algebra and Quantization , 1981 .

[51]  Marjorie Batchelor The structure of supermanifolds , 1979 .

[52]  V. N. Popov,et al.  Feynman Diagrams for the Yang-Mills Field , 1967 .

[53]  Harold Erbin BRST Quantization , 2021, String Field Theory.

[54]  P. Mn¨ev Notes on Simplicial Bf Theory , 2006 .

[55]  G. Naber,et al.  Encyclopedia of Mathematical Physics , 2006 .

[56]  J. Stashe The (secret?) Homological Algebra of the Batalin-vilkovisky Approach , 1997 .

[57]  Ian Anderson,et al.  Introduction to the Variational Bicomplex , 1992 .

[58]  J. Zinn-Justin,et al.  Renormalization of Gauge Theories , 2018, Quantum Field Theory.

[59]  H. Epstein,et al.  The Role of locality in perturbation theory , 1973 .