Improving the ‘tool box’ for robust industrial enzymes

The speed of sequencing of microbial genomes and metagenomes is providing an ever increasing resource for the identification of new robust biocatalysts with industrial applications for many different aspects of industrial biotechnology. Using ‘natures catalysts’ provides a sustainable approach to chemical synthesis of fine chemicals, general chemicals such as surfactants and new consumer-based materials such as biodegradable plastics. This provides a sustainable and ‘green chemistry’ route to chemical synthesis which generates no toxic waste and is environmentally friendly. In addition, enzymes can play important roles in other applications such as carbon dioxide capture, breakdown of food and other waste streams to provide a route to the concept of a ‘circular economy’ where nothing is wasted. The use of improved bioinformatic approaches and the development of new rapid enzyme activity screening methodology can provide an endless resource for new robust industrial biocatalysts.This mini-review will discuss several recent case studies where industrial enzymes of ‘high priority’ have been identified and characterised. It will highlight specific hydrolase enzymes and recent case studies which have been carried out within our group in Exeter.

[1]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[2]  F. Raushel,et al.  Catalytic mechanisms for phosphotriesterases. , 2013, Biochimica et biophysica acta.

[3]  U. Bornscheuer Microbial carboxyl esterases: classification, properties and application in biocatalysis. , 2002, FEMS microbiology reviews.

[4]  K. Stetter,et al.  Isolation of Extremely Thermophilic Sulfate Reducers: Evidence for a Novel Branch of Archaebacteria , 1987, Science.

[5]  D. Monti,et al.  Efficient Epoxide Hydrolase Catalyzed Resolutions of (+)‐ and (−)‐cis/trans‐Limonene Oxides , 2015 .

[6]  J. Littlechild,et al.  The crystal structure of a (-) gamma-lactamase from an Aureobacterium species reveals a tetrahedral intermediate in the active site. , 2004, Journal of molecular biology.

[7]  D. Hough,et al.  Enzyme stability and activity at high temperatures , 2008 .

[8]  S. Spring,et al.  Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats , 2005, Extremophiles.

[9]  Servé W. M. Kengen,et al.  Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site , 2016, Scientific Reports.

[10]  Giuseppe Manco,et al.  The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. , 2006, Biochemistry.

[11]  Eunsoo Hong,et al.  Improved enantioselectivity of thermostable esterase from Archaeoglobus fulgidus toward (S)-ketoprofen ethyl ester by directed evolution and characterization of mutant esterases , 2015, Applied Microbiology and Biotechnology.

[12]  Narinder I. Heyer,et al.  Metabolic Pathway Promiscuity in the Archaeon Sulfolobus solfataricus Revealed by Studies on Glucose Dehydrogenase and 2-Keto-3-deoxygluconate Aldolase* , 2003, Journal of Biological Chemistry.

[13]  G. Manco,et al.  The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. , 2001, Journal of molecular biology.

[14]  M. Nardini,et al.  Alpha/beta hydrolase fold enzymes: the family keeps growing. , 1999, Current opinion in structural biology.

[15]  Rohit K. Sharma,et al.  Biocatalysis Through Thermostable Lipases: Adding Flavor to Chemistry , 2013 .

[16]  J. Littlechild,et al.  The atomic-resolution structure of a novel bacterial esterase. , 2000, Structure.

[17]  M. Elias,et al.  Structural and Enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus , 2012, PloS one.

[18]  K. D'Ambrosio,et al.  Thermostable Carbonic Anhydrases in Biotechnological Applications , 2015, International journal of molecular sciences.

[19]  M. Bott,et al.  The Nonphosphorylative Entner-Doudoroff Pathway in the Thermoacidophilic Euryarchaeon Picrophilus torridus Involves a Novel 2-Keto-3-Deoxygluconate- Specific Aldolase , 2009, Journal of bacteriology.

[20]  B. Siebers,et al.  Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. , 2005, Current opinion in microbiology.

[21]  J. Schrag,et al.  Switching catalysis from hydrolysis to perhydrolysis in Pseudomonas fluorescens esterase. , 2010, Biochemistry.

[22]  Thierry Hotelier,et al.  ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions , 2012, Nucleic Acids Res..

[23]  S. McNicholas,et al.  Presenting your structures: the CCP4mg molecular-graphics software , 2011, Acta crystallographica. Section D, Biological crystallography.

[24]  Seungbum Kim,et al.  Cloning and characterization of thermostable esterase from Archaeoglobus fulgidus , 2008, The Journal of Microbiology.

[25]  Jennifer A. Littlechild,et al.  Thermophilic Microbes in Environmental and Industrial Biotechnology: Biotechnology of Thermophiles , 2013 .

[26]  W. Wooster,et al.  Crystal structure of , 2005 .

[27]  M. Elias,et al.  Crystal structure of VmoLac, a tentative quorum quenching lactonase from the extremophilic crenarchaeon Vulcanisaeta moutnovskia , 2015, Scientific Reports.

[28]  M. Nardini,et al.  α/β Hydrolase fold enzymes : the family keeps growing , 1999 .

[29]  J. Bains,et al.  A product analog bound form of 3-oxoadipate-enol-lactonase (PcaD) reveals a multifunctional role for the divergent cap domain. , 2011, Journal of molecular biology.

[30]  N. Ravin,et al.  Complete Genome Sequence of “Vulcanisaeta moutnovskia” Strain 768-28, a Novel Member of the Hyperthermophilic Crenarchaeal Genus Vulcanisaeta , 2011, Journal of bacteriology.

[31]  Giuseppe Manco,et al.  A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. , 2007, Biochimie.

[32]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[33]  J. Littlechild,et al.  Crystal structure of the glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. , 1999, Journal of molecular biology.

[34]  David Eisenberg,et al.  Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  E. Bonch‐Osmolovskaya,et al.  Thermogutta terrifontis gen. nov., sp. nov. and Thermogutta hypogea sp. nov., thermophilic anaerobic representatives of the phylum Planctomycetes. , 2015, International journal of systematic and evolutionary microbiology.

[36]  T. Whittam,et al.  Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  F. Himo,et al.  Catalytic mechanism of limonene epoxide hydrolase, a theoretical study. , 2005, Journal of the American Chemical Society.

[38]  D. Blow,et al.  Role of a Buried Acid Group in the Mechanism of Action of Chymotrypsin , 1969, Nature.

[39]  M. Widersten,et al.  Structure-function relationships of epoxide hydrolases and their potential use in biocatalysis. , 2010, Biochimica et biophysica acta.

[40]  T. Kievit Quorum sensing in Pseudomonas aeruginosa biofilms. , 2009 .

[41]  K. Hult,et al.  Molecular basis of perhydrolase activity in serine hydrolases. , 2005, Angewandte Chemie.

[42]  M. Parsek,et al.  Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? , 2006, Cellular microbiology.

[43]  G. Manco,et al.  Enzymes with Phosphotriesterase and Lactonase Activities in Archaea , 2008 .

[44]  C. Supuran,et al.  A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization , 2016, Journal of enzyme inhibition and medicinal chemistry.

[45]  Giuseppe Manco,et al.  A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties , 2005, Extremophiles.

[46]  G. Böhm,et al.  The stability of proteins in extreme environments. , 1998, Current opinion in structural biology.

[47]  Redesign of human carbonic anhydrase II for increased esterase activity and specificity towards esters with long acyl chains. , 2006, Biochimica et biophysica acta.

[48]  S. Lindskog Structure and mechanism of carbonic anhydrase. , 1997, Pharmacology & therapeutics.

[49]  Bernhard Hauer,et al.  New Generation of Biocatalysts for Organic Synthesis , 2014 .

[50]  S. d'Auria,et al.  Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus. , 2000, Archives of biochemistry and biophysics.

[51]  M. Singleton,et al.  X-ray structure of pyrrolidone carboxyl peptidase from the hyperthermophilic archaeon Thermococcus litoralis. , 1999, Structure.

[52]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[53]  J. Littlechild,et al.  The structure of a tetrameric α-carbonic anhydrase from Thermovibrio ammonificans reveals a core formed around intermolecular disulfides that contribute to its thermostability. , 2014, Acta crystallographica. Section D, Biological crystallography.

[54]  Roland Wohlgemuth,et al.  Epoxide Hydrolases and their Application in Organic Synthesis , 2012 .

[55]  J. Littlechild,et al.  Crystal structure and substrate specificity of the thermophilic serine:pyruvate aminotransferase from Sulfolobus solfataricus. , 2012, Acta crystallographica. Section D, Biological crystallography.

[56]  Peter Kuhn,et al.  Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1. , 2006, Journal of molecular biology.

[57]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[58]  H. Schwab,et al.  EstB from Burkholderia gladioli: A novel esterase with a β‐lactamase fold reveals steric factors to discriminate between esterolytic and β‐lactam cleaving activity , 2002, Protein science : a publication of the Protein Society.

[59]  D. Silverman,et al.  The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water , 1988 .

[60]  Joel L. Sussman,et al.  The α/β hydrolase fold , 1992 .

[61]  J. Littlechild,et al.  Structural studies of a thermophilic esterase from a new Planctomycetes species, Thermogutta terrifontis , 2015, The FEBS journal.

[62]  A. Tocilj,et al.  Biological Crystallography Structure of an Aryl Esterase from Pseudomonas Fluorescens , 2022 .

[63]  J. Littlechild,et al.  The structure of an alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix. , 2003, Journal of molecular biology.

[64]  Jian‐He Xu,et al.  A smart library of epoxide hydrolase variants and the top hits for synthesis of (S)-β-blocker precursors. , 2014, Angewandte Chemie.

[65]  D. Campopiano,et al.  An improved racemase/acylase biotransformation for the preparation of enantiomerically pure amino acids. , 2012, Journal of the American Chemical Society.

[66]  Xu Peng,et al.  Discovery and characterization of thermophilic limonene‐1,2‐epoxide hydrolases from hot spring metagenomic libraries , 2015, The FEBS journal.

[67]  Franz Oesch,et al.  Structure of Rhodococcus erythropolis limonene‐1,2‐epoxide hydrolase reveals a novel active site , 2003, The EMBO journal.

[68]  H. Hecht,et al.  Structural investigation of the cofactor-free chloroperoxidases. , 1998, Journal of molecular biology.

[69]  C. Supuran,et al.  X-ray structure of the first `extremo-α-carbonic anhydrase', a dimeric enzyme from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. , 2013, Acta crystallographica. Section D, Biological crystallography.

[70]  J. Littlechild,et al.  The Structure of a Novel Thermophilic Esterase from the Planctomycetes Species, Thermogutta terrifontis Reveals an Open Active Site Due to a Minimal ‘Cap’ Domain , 2015, Front. Microbiol..

[71]  H. Toogood,et al.  A thermostable L-aminoacylase from Thermococcus litoralis: cloning, overexpression, characterization, and applications in biotransformations , 2002, Extremophiles.

[72]  D. Hough,et al.  Promiscuity in the Archaea. The enzymology of metabolic pathways , 2005 .

[73]  G. Taylor,et al.  The Structural Basis for Substrate Promiscuity in 2-Keto-3-deoxygluconate Aldolase from the Entner-Doudoroff Pathway in Sulfolobus solfataricus* , 2004, Journal of Biological Chemistry.

[74]  J. Littlechild,et al.  Characterization of a phosphotriesterase-like lactonase from the hyperthermoacidophilic crenarchaeon Vulcanisaeta moutnovskia. , 2014, Journal of biotechnology.

[75]  J. Littlechild,et al.  Mechanisms of Thermal Stability Adopted by Thermophilic Proteins and Their Use in White Biotechnology , 2013 .

[76]  C Upton,et al.  A new family of lipolytic enzymes? , 1995, Trends in biochemical sciences.