A STRONG LAW OF LARGE NUMBERS FOR SCRAMBLED NET INTEGRATION By Art

[1]  Erich Novak,et al.  Solvable integration problems and optimal sample size selection , 2018, J. Complex..

[2]  Andreas Griewank,et al.  High dimensional integration of kinks and jumps - Smoothing by preintegration , 2017, J. Comput. Appl. Math..

[3]  Frances Y. Kuo,et al.  Note on "The smoothing effect of integration in ℝd and the ANOVA decomposition" , 2012, Math. Comput..

[4]  Kinjal Basu,et al.  Quasi-Monte Carlo for an Integrand with a Singularity along a Diagonal in the Square , 2016, ArXiv.

[5]  Frances Y. Kuo,et al.  Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation , 2016, Foundations of Computational Mathematics.

[6]  Kinjal Basu,et al.  Asymptotic Normality of Scrambled Geometric Net Quadrature , 2016, 1601.05842.

[7]  Art B. Owen,et al.  A constraint on extensible quadrature rules , 2014, Numerische Mathematik.

[8]  Zhijian He,et al.  On the Convergence Rate of Randomized Quasi-Monte Carlo for Discontinuous Functions , 2015, SIAM J. Numer. Anal..

[9]  P. L’Ecuyer,et al.  Random Number Generation and Quasi-Monte Carlo† , 2015 .

[10]  D. Rudolf,et al.  Error bounds of MCMC for functions with unbounded stationary variance , 2013, 1312.4344.

[11]  C. Aistleitner,et al.  Functions of bounded variation, signed measures, and a general Koksma-Hlawka inequality , 2014, 1406.0230.

[12]  Carola Doerr,et al.  Calculation of Discrepancy Measures and Applications , 2014, 1405.1653.

[13]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[14]  Giacomo Gigante,et al.  On the Koksma-Hlawka inequality , 2011, J. Complex..

[15]  Frances Y. Kuo,et al.  The smoothing effect of integration in Rd and the ANOVA decomposition , 2013, Math. Comput..

[16]  I. Sobol,et al.  Construction and Comparison of High-Dimensional Sobol' Generators , 2011 .

[17]  Wolfgang Ch. Schmid,et al.  MINT – New Features and New Results , 2009 .

[18]  Frances Y. Kuo,et al.  Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..

[19]  J. Hartinger,et al.  Non-Uniform Low-Discrepancy Sequence Generation and Integration of Singular Integrands , 2006 .

[20]  Art B. Owen,et al.  Halton Sequences Avoid the Origin , 2006, SIAM Rev..

[21]  A. Owen Local antithetic sampling with scrambled nets , 2008, 0811.0528.

[22]  C. Baxa Calculation of improper integrals using uniformly distributed sequences , 2005 .

[23]  A. Owen Multidimensional variation for quasi-Monte Carlo , 2004 .

[24]  Art B. Owen,et al.  Variance with alternative scramblings of digital nets , 2003, TOMC.

[25]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[26]  Wei-Liem Loh On the asymptotic distribution of scrambled net quadrature , 2003 .

[27]  Fred J. Hickernell,et al.  The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..

[28]  Fred J. Hickernell,et al.  Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..

[29]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[30]  Art B. Owen,et al.  Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..

[31]  I. Sobol,et al.  On quasi-Monte Carlo integrations , 1998 .

[32]  J. M. Sek,et al.  On the L2-discrepancy for anchored boxes , 1998 .

[33]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[34]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[35]  Harald Niederreiter,et al.  Quasirandom points and global function fields , 1996 .

[36]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[37]  A. Keller A Quasi-Monte Carlo Algorithm for the Global Illumination Problem in the Radiosity Setting , 1995 .

[38]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[39]  S. Heinrich Random Approximation in Numerical Analysis , 1994 .

[40]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[41]  R. Durrett Probability: Theory and Examples , 1993 .

[42]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[43]  C. Bennett,et al.  Interpolation of operators , 1987 .

[44]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[45]  D. W. Arthur,et al.  Methods of numerical Integration (2nd edition), by Philip J. Davis and Philip Rabinowitz. Pp 612. £36·50. 1984. ISBN 0-12-206360-0 (Academic Press) , 1986, The Mathematical Gazette.

[46]  M. Mandelkern Continuity of monotone functions. , 1982 .

[47]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[48]  N. Etemadi An elementary proof of the strong law of large numbers , 1981 .

[49]  H. Niederreiter Pseudo-random numbers and optimal coefficients☆ , 1977 .

[50]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[51]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[52]  J. A. Clarkson,et al.  On definitions of bounded variation for functions of two variables , 1933 .