A STRONG LAW OF LARGE NUMBERS FOR SCRAMBLED NET INTEGRATION By Art
暂无分享,去创建一个
A. Owen | D. Rudolf | B. Owen | Daniel Rudolf
[1] Erich Novak,et al. Solvable integration problems and optimal sample size selection , 2018, J. Complex..
[2] Andreas Griewank,et al. High dimensional integration of kinks and jumps - Smoothing by preintegration , 2017, J. Comput. Appl. Math..
[3] Frances Y. Kuo,et al. Note on "The smoothing effect of integration in ℝd and the ANOVA decomposition" , 2012, Math. Comput..
[4] Kinjal Basu,et al. Quasi-Monte Carlo for an Integrand with a Singularity along a Diagonal in the Square , 2016, ArXiv.
[5] Frances Y. Kuo,et al. Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation , 2016, Foundations of Computational Mathematics.
[6] Kinjal Basu,et al. Asymptotic Normality of Scrambled Geometric Net Quadrature , 2016, 1601.05842.
[7] Art B. Owen,et al. A constraint on extensible quadrature rules , 2014, Numerische Mathematik.
[8] Zhijian He,et al. On the Convergence Rate of Randomized Quasi-Monte Carlo for Discontinuous Functions , 2015, SIAM J. Numer. Anal..
[9] P. L’Ecuyer,et al. Random Number Generation and Quasi-Monte Carlo† , 2015 .
[10] D. Rudolf,et al. Error bounds of MCMC for functions with unbounded stationary variance , 2013, 1312.4344.
[11] C. Aistleitner,et al. Functions of bounded variation, signed measures, and a general Koksma-Hlawka inequality , 2014, 1406.0230.
[12] Carola Doerr,et al. Calculation of Discrepancy Measures and Applications , 2014, 1405.1653.
[13] Frances Y. Kuo,et al. High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.
[14] Giacomo Gigante,et al. On the Koksma-Hlawka inequality , 2011, J. Complex..
[15] Frances Y. Kuo,et al. The smoothing effect of integration in Rd and the ANOVA decomposition , 2013, Math. Comput..
[16] I. Sobol,et al. Construction and Comparison of High-Dimensional Sobol' Generators , 2011 .
[17] Wolfgang Ch. Schmid,et al. MINT – New Features and New Results , 2009 .
[18] Frances Y. Kuo,et al. Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..
[19] J. Hartinger,et al. Non-Uniform Low-Discrepancy Sequence Generation and Integration of Singular Integrands , 2006 .
[20] Art B. Owen,et al. Halton Sequences Avoid the Origin , 2006, SIAM Rev..
[21] A. Owen. Local antithetic sampling with scrambled nets , 2008, 0811.0528.
[22] C. Baxa. Calculation of improper integrals using uniformly distributed sequences , 2005 .
[23] A. Owen. Multidimensional variation for quasi-Monte Carlo , 2004 .
[24] Art B. Owen,et al. Variance with alternative scramblings of digital nets , 2003, TOMC.
[25] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[26] Wei-Liem Loh. On the asymptotic distribution of scrambled net quadrature , 2003 .
[27] Fred J. Hickernell,et al. The Mean Square Discrepancy of Scrambled (t, s)-Sequences , 2000, SIAM J. Numer. Anal..
[28] Fred J. Hickernell,et al. Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..
[29] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[30] Art B. Owen,et al. Scrambling Sobol' and Niederreiter-Xing Points , 1998, J. Complex..
[31] I. Sobol,et al. On quasi-Monte Carlo integrations , 1998 .
[32] J. M. Sek,et al. On the L2-discrepancy for anchored boxes , 1998 .
[33] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[34] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[35] Harald Niederreiter,et al. Quasirandom points and global function fields , 1996 .
[36] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[37] A. Keller. A Quasi-Monte Carlo Algorithm for the Global Illumination Problem in the Radiosity Setting , 1995 .
[38] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[39] S. Heinrich. Random Approximation in Numerical Analysis , 1994 .
[40] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[41] R. Durrett. Probability: Theory and Examples , 1993 .
[42] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[43] C. Bennett,et al. Interpolation of operators , 1987 .
[44] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[45] D. W. Arthur,et al. Methods of numerical Integration (2nd edition), by Philip J. Davis and Philip Rabinowitz. Pp 612. £36·50. 1984. ISBN 0-12-206360-0 (Academic Press) , 1986, The Mathematical Gazette.
[46] M. Mandelkern. Continuity of monotone functions. , 1982 .
[47] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[48] N. Etemadi. An elementary proof of the strong law of large numbers , 1981 .
[49] H. Niederreiter. Pseudo-random numbers and optimal coefficients☆ , 1977 .
[50] R. Cranley,et al. Randomization of Number Theoretic Methods for Multiple Integration , 1976 .
[51] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[52] J. A. Clarkson,et al. On definitions of bounded variation for functions of two variables , 1933 .