Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars

[1] We report maps of the concentrations of H, Si, Cl, K, Fe, and Th as determined by the Gamma Ray Spectrometer (GRS) on board the 2001 Mars Odyssey Mission for ±∼45° latitudes. The procedures by which the spectra are processed to yield quantitative concentrations are described in detail. The concentrations of elements determined over the locations of the various Mars landers generally agree well with the lander values except for Fe, although the mean of the GRS Fe data agrees well with that of Martian meteorites. The water-equivalent concentration of hydrogen by mass varies from about 1.5% to 7.5% (by mass) with the most enriched areas being near Apollinaris Patera and Arabia Terra. Cl shows a distribution similar to H over the surface except that the Cl content over Medusae Fossae is much greater than elsewhere. The map of Fe shows enrichment in the northern lowlands versus the southern highlands. Silicon shows only very modest variation over the surface with mass fractions ranging from 19% to 22% over most of the planet, though a significant depletion in Si is noted in a region west of Tharsis Montes and Olympus Mons where the Si content is as low as 18%. K and Th show a very similar pattern with depletions associated with young volcanic deposits and enrichments associated with the TES Surface Type-2 material. It is noted that there appears to be no evidence of significant globally distributed thick dust deposits of uniform composition.

[1]  A. K. Baird,et al.  The Viking X ray fluorescence experiment - Sampling strategies and laboratory simulations. [Mars soil sampling] , 1977 .

[2]  Martin P. Ward,et al.  The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite , 2004 .

[3]  Philip R. Christensen,et al.  Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration , 2007 .

[4]  E. Christiansen,et al.  Lahars in the Elysium region of Mars , 1989 .

[5]  Richard D. Starr,et al.  Variations in K/Th on Mars , 2007 .

[6]  Robert B. Singer,et al.  Mars surface composition from reflectance spectroscopy: A summary , 1979 .

[7]  Richard D. Starr,et al.  Bulk composition and early differentiation of Mars , 2007 .

[8]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[9]  R. Craddock,et al.  Geomorphic evolution of the Martian highlands through ancient fluvial processes , 1993 .

[10]  R. Reedy,et al.  Gamma ray production and transport in Mars , 1996 .

[11]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[12]  J. M. Dohm,et al.  Map of Mars showing channels and possible paleolake basins , 1995 .

[13]  R. Reedy,et al.  Theoretical fluxes of gamma rays from the Martian surface , 2007 .

[14]  R. Reedy,et al.  Surface chemistry of selected lunar regions , 1976 .

[15]  Rudolf Rieder,et al.  Chemical Composition of Rocks and Soils at the Pathfinder Site , 2001 .

[16]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[17]  Richard D. Starr,et al.  Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS , 2007 .

[18]  G. J. Taylor,et al.  Composition of northern low-albedo regions of Mars : Insights from the Mars Odyssey Gamma Ray Spectrometer , 2007 .

[19]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[20]  M. Mellon,et al.  Hydration state of zeolites, clays, and hydrated salts under present-day martian surface conditions : Can hydrous minerals account for Mars odyssey Observations of near-equatorial water-equivalent hydrogen? , 2005 .

[21]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[22]  D. H. Scott Global geologic mapping of Mars: The western equatorial region , 1985 .

[23]  Observation of the γ-ray emission from the martian surface by the APEX experiment , 1989, Nature.

[24]  V. Baker Water and the martian landscape , 2001, Nature.

[25]  J. Grant,et al.  The Medusae Fossae Formation, Amazonis Planitia, Mars: Evaluation of Proposed Hypotheses of Origin , 1997 .

[26]  M. Malin,et al.  The Igneous Diversity of Mars: Evidence for Magmatic Evolution Analogous to Earth , 2005 .

[27]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[28]  W. Boynton,et al.  Comparison between polar regions of Mars from HEND/Odyssey data , 2006 .

[29]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[30]  V. R. Baker,et al.  Ancient oceans, ice sheets and the hydrological cycle on Mars , 1991, Nature.

[31]  S. Squyres,et al.  Effects of material mixing on planetary gamma ray spectroscopy , 1992 .

[32]  Philip A. Davis,et al.  Iron and titanium distribution on the moon from orbital gamma ray spectrometry with implications for crustal evolutionary models , 1980 .

[33]  Evans,et al.  The elemental composition of asteroid 433 eros: results of the NEAR-shoemaker X-ray spectrometer , 2000, Science.

[34]  Robert C. Reedy,et al.  Effects of bulk composition on nuclide production processes in meteorites , 1994 .

[35]  William V. Boynton,et al.  Chemical compositions at Mars landing sites subject to Mars Odyssey Gamma Ray Spectrometer constraints , 2007 .

[36]  Robert L. Tokar,et al.  Global Distribution of Neutrons from Mars: Results from Mars Odyssey , 2002, Science.

[37]  A. S. Kozyrev,et al.  Soil Water Content on Mars as Estimated from Neutron Measurements by the HEND Instrument Onboard the 2001 Mars Odyssey Spacecraft , 2004 .

[38]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[39]  Alan D. Howard,et al.  The case for rainfall on a warm, wet early Mars , 2002 .

[40]  D. H. Scott,et al.  GEOLOGIC MAP OF THE WESTERN EQUATORIAL REGION OF MARS , 1986 .

[41]  Harry Y. McSween,et al.  Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars , 2002, Nature.

[42]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[43]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[44]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[45]  P. Mouginis-Mark,et al.  Chronology, Eruption Duration, and Atmospheric Contribution of the Martian Volcano Apollinaris Patera , 1993 .

[46]  W. Feldman,et al.  MCNPX benchmark for cosmic ray interactions with the Moon , 2006 .

[47]  R. Reedy Nuclide production by primary cosmic‐ray protons , 1987 .

[48]  S. McLennan Large‐ion lithophile element fractionation during the early differentiation of Mars and the composition of the martian primitive mantle , 2003 .

[49]  Richard D. Starr,et al.  Analysis of gamma ray spectra measured by Mars Odyssey , 2007 .

[50]  Kenneth L. Tanaka,et al.  Geologic map of the northern plains of Mars , 2005 .

[51]  Jeffrey S. Miller,et al.  Mapping of Spectral Variations on the Surface of Mars from High Spectral Resolution Telescopic Images , 1996 .

[52]  Robert L. Tokar,et al.  Topographic control of hydrogen deposits at low latitudes to midlatitudes of Mars , 2005 .

[53]  Thomas H. Prettyman,et al.  Composition from fast neutrons: Application to the Moon , 2001 .

[54]  S. Squyres,et al.  Investigation of Martian H2O and Co2 via orbital gamma ray spectroscopy , 1987 .

[55]  M. Norman The composition and thickness of the crust of Mars estimated from rare earth elements and neodymium‐isotopic compositions of Martian meteorites , 1999 .

[56]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[57]  James M. Dohm,et al.  Inhibition of carbonate synthesis in acidic oceans on early Mars , 2004, Nature.

[58]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[59]  Erzsébet Merényi,et al.  Deucalionis Regio, Mars: Evidence for a New Type of Immobile Weathered Soil Unit , 1996 .

[60]  D. H. Scott,et al.  Geologic map of science study area 8, Apollinaris Patera region of Mars , 1993 .

[61]  Trent M. Hare,et al.  Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes , 2001 .

[62]  M. Mellon,et al.  On the Distribution and Implications of Mantled and Exhumed Terrains on Mars , 2002 .

[63]  Kenneth L. Tanaka,et al.  Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data , 2003 .

[64]  Klaus Keil,et al.  Geochemical and mineralogical interpretation of the Viking inorganic chemical results , 1977 .

[65]  Richard V. Morris,et al.  Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples , 2000 .

[66]  Jeffrey R. Barnes,et al.  General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data , 1999 .

[67]  R. Reedy,et al.  Seasonal polar carbon dioxide frost on Mars: CO2 mass and columnar thickness distribution , 2007 .

[68]  Raymond E. Arvidson,et al.  2001 Mars Odyssey Mission Summary , 2004 .

[69]  W. Boynton,et al.  Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey , 2002, Science.

[70]  William V. Boynton,et al.  Geochemistry of Martian soil and bedrock in mantled and less mantled terrains with gamma ray data from Mars Odyssey , 2007 .

[71]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[72]  D. Crown,et al.  Geologic evolution of the east rim of the Hellas basin Mars , 1991 .

[73]  Robert C. Anderson,et al.  Episodic flood inundations of the northern plains of Mars , 2003 .

[74]  Richard D. Starr,et al.  Science applications of the Mars Observer gamma ray spectrometer , 1992 .

[75]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[76]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[77]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[78]  D. H. Scott,et al.  Ignimbrites of Amazonis Planitia region of Mars , 1982 .

[79]  R. Reedy,et al.  The Martian Surface: Elemental abundances determined via the Mars Odyssey GRS , 2008 .

[80]  D. H. Scott,et al.  Latent outflow activity for western Tharsis, Mars: Significant flood record exposed , 2001 .

[81]  M. Norman Thickness and Composition of the Martian Crust Revisited: Implications of an Ultradepleted Mantle with a Nd Isotopic Composition Like that of QUE94201 , 2002 .

[82]  S. Maurice,et al.  Global elemental maps of the moon: the Lunar Prospector gamma-Ray spectrometer. , 1998, Science.

[83]  Klaus Keil,et al.  The Viking X ray fluorescence experiment - Analytical methods and early results , 1977 .