New sufficient conditions for robust stability analysis of interval matrices

Abstract This letter presents new sufficient conditions for robust Hurwitz stability of interval matrices. The proposed conditions are based on two approaches: (i) finding a common Lyapunov matrix for the interval family and (ii) converting the robust stability problem into a robust non-singularity problem using Kronecker operations. The main contribution of the letter is to derive accurate and computationally simple optimal estimates of the robustness margin and spectral bound of general interval matrices. The evaluation of the condition relies on the solutions of linear matrix inequalities (LMIs) and eigenvalue problems, both of which are solved very efficiently. The improvements gained by using the proposed conditions are demonstrated through application to previous examples in the literature.

[1]  Quan Yuan,et al.  An evolution strategy method for computing eigenvalue bounds of interval matrices , 2008, Appl. Math. Comput..

[2]  Mihaela-Hanako Matcovschi,et al.  Diagonal stability of interval matrices and applications , 2010 .

[3]  Yangquan Chen,et al.  Exact Maximum Singular Value Calculation of an Interval Matrix , 2007, IEEE Transactions on Automatic Control.

[4]  J. Rohn Bounds on Eigenvalues of Interval Matrices , 1998 .

[5]  Eduardo F. Camacho,et al.  A new vertex result for robustness problems with interval matrix uncertainty , 2007, 2007 European Control Conference (ECC).

[6]  Ricardo C. L. F. Oliveira,et al.  LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions , 2006, Syst. Control. Lett..

[7]  Mihaela-Hanako Matcovschi,et al.  Comments on "Assessing the Stability of Linear Time-Invariant Continuous Interval Dynamic Systems" , 2011, IEEE Trans. Autom. Control..

[8]  A. Rachid,et al.  Generalized Gerschgorin disc and stability analysis of dynamic interval systems , 1996 .

[9]  Hyo-Sung Ahn,et al.  Exact Maximum Singular Value of a Complex Interval Matrix , 2008, IEEE Transactions on Automatic Control.

[10]  Mehdi Dehghan,et al.  The interval Lyapunov matrix equation: Analytical results and an efficient numerical technique for outer estimation of the united solution set , 2012, Math. Comput. Model..

[11]  Huang Lin,et al.  Root locations of an entire polytope of polynomials: It suffices to check the edges , 1987, 1987 American Control Conference.

[12]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[13]  Lubomir V. Kolev,et al.  Determining the Range of the Power Consumption in Linear DC Interval Parameter Circuits , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  R. Unbehauen,et al.  Robust Hurwitz and Schur stability test for interval matrices , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[15]  R. Yedavalli A noncombinatorial necessary and sufficient 'vertex' solution for checking robust stability of polytopes of matrices induced by interval parameters , 2003, Proceedings of the 2003 American Control Conference, 2003..

[16]  Majid Firouzbahrami,et al.  On the Integrity of Uncertain Systems with Structured Uncertainty , 2011 .

[17]  Yau-Tarng Juang,et al.  Stability analysis of dynamic interval systems , 1989 .

[18]  Mau-Hsiang Shih,et al.  Simultaneous Schur stability of interval matrices , 2008, Autom..

[19]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[20]  Simona Petrakieva,et al.  Assessing the stability of linear time-invariant continuous interval dynamic systems , 2005, IEEE Transactions on Automatic Control.

[21]  Jian Chu,et al.  Quadratic stability and stabilization of dynamic interval systems , 2003, IEEE Trans. Autom. Control..

[22]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[23]  Giuseppe Franzè,et al.  Computational method to analyse the stability of interval matrices , 2004 .