Synthesis of polyphenylene molecular wires by surface-confined polymerization.

The surface-mediated synthesis of epitaxially aligned and separated polyphenylene lines on Cu(110) by exploiting the Ullmann dehalogenation reaction is reported. Scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) show that the C-I bonds of 1,4-diiodobenzene and 1,3-diiodobenzene (C(6)H(4)I(2)) are catalytically cleaved when dosed onto the surface. Subsequent annealing transforms the copper-bound phenylene intermediates into covalent conjugated structures: linear chains of poly(p-phenylene) for 1,4-diiodobenzene and zigzag chains of poly(m-phenylene) as well as macrocyclic oligomers in the case of 1,3-diiodobenzene. The chains are strongly bound to the surface (likely through C--Cu bonds at the chain-ends) while the macrocycles are very mobile and can only be imaged by STM at low temperature. The detached halogens adsorb on the surface and separate the polymer chains from each other.

[1]  F. Ullmann,et al.  Ueber Synthesen in der Biphenylreihe , 1901 .

[2]  P. E. Fanta The Ullmann synthesis of biaryls. , 1974, Chemical reviews.

[3]  A. Massey,et al.  Perfluorophenyl derivatives of the elements : XII. 2,2′-disubstituted octafluorobiphenyls☆ , 1967 .

[4]  H. A. Staab,et al.  Zur Konjugation in makrocyclischen Bindungssystemen, X. Über 3.6′;3′.6";3".6‐Triphenanthrylen und verwandte Verbindungen , 1968 .

[5]  H. Rosenberg,et al.  Synthesis of 1,1'-biferrocenylene , 1969 .

[6]  H. Irngartinger,et al.  Zur Konjugation in makrocyclischen Bindungssystemen, XVII. Kristall‐ und Molekülstrukturen von Hexa‐m‐phenylen und Penta‐m‐phenylen , 1970 .

[7]  R. C. Hewitt,et al.  Sexafs studies of iodine adsorbed on single crystal substrates , 1979 .

[8]  R. L. Elsenbaumer,et al.  Handbook of conducting polymers , 1986 .

[9]  X. Zhou,et al.  Thermal decomposition of C2H5I on Ag(111) , 1989 .

[10]  X. Zhou,et al.  Interactions of methyl halides (Cl, Br and I) with Ag(111) , 1989 .

[11]  B. Farmer,et al.  Crystal Structures, Phase Transitions and Energy Calculations of Poly(p-phenylene) Oligomers , 1993 .

[12]  A. Sygula,et al.  The preferred U-conformation of m-quinquephenyl. An X-ray crystal structure determination and molecular mechanics study , 1993 .

[13]  S. Valiyaveettil,et al.  Submolecularly resolved polymerization of diacetylene molecules on the graphite surface observed with scanning tunneling microscopy , 1997 .

[14]  F. Solymosi,et al.  Thermal and photoinduced dissociation of CH2I2 on Cu(100) surface , 1997 .

[15]  A. Bradshaw,et al.  Imaging benzene on nickel and copper {110} surfaces with low temperature STM:: the adsorption site , 1998 .

[16]  Meyer,et al.  Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering , 2000, Physical review letters.

[17]  M. Aono,et al.  Materials science: Nanoscale control of chain polymerization , 2001, Nature.

[18]  P. Weiss,et al.  Footprints of a surface chemical reaction: Dissociative chemisorption of p-diiodobenzene on Cu{111} , 2002 .

[19]  Stefan J H Griessl,et al.  Coronene on Ag(111) Investigated by LEED and STM in UHV , 2002 .

[20]  M. Lemaire,et al.  Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. , 2002, Chemical reviews.

[21]  M. Aono,et al.  Nanoscale wiring by controlled chain polymerization , 2002 .

[22]  K. Kelly,et al.  Substrate-mediated interactions and intermolecular forces between molecules adsorbed on surfaces. , 2003, Accounts of chemical research.

[23]  M. W. Roberts,et al.  Chemisorption and reaction of phenyl iodide at Cu(110) surfaces: a combined STM and XPS study [rapid communication] , 2004 .

[24]  Hiroshi Sakaguchi,et al.  Electrochemical epitaxial polymerization of single-molecular wires , 2004, Nature materials.

[25]  B. L. Rogers,et al.  Ab initio study of benzene adsorption on the Cu(1 1 0) surface and simulation of STM images , 2004 .

[26]  P. Weiss,et al.  Formation and manipulation of protopolymer chains. , 2004, Journal of the American Chemical Society.

[27]  H. Sakaguchi,et al.  Direct Visualization of the Formation of Single-Molecule Conjugated Copolymers , 2005, Science.

[28]  B. V. Andryushechkin,et al.  Atomic structure of chemisorbed iodine layer on Cu(110) , 2005 .

[29]  D. Morgan,et al.  The reactive chemisorption of alkyl iodides at Cu(110) and Ag(111) surfaces: a combined STM and XPS study. , 2005, The journal of physical chemistry. B.

[30]  F. Illas,et al.  A systematic study of the structure and bonding of halogens on low-index transition metal surfaces. , 2006, The journal of physical chemistry. B.

[31]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[32]  Neil R Champness,et al.  Surface chemistry: building with molecules. , 2007, Nature nanotechnology.

[33]  M. Persson,et al.  Nano-architectures by covalent assembly of molecular building blocks. , 2007, Nature nanotechnology.

[34]  Didier Gigmes,et al.  Organized formation of 2D extended covalent organic frameworks at surfaces. , 2008, Journal of the American Chemical Society.

[35]  A. Gourdon,et al.  On-surface covalent coupling in ultrahigh vacuum. , 2008, Angewandte Chemie.

[36]  R. Fasel,et al.  Fabrication of surface-supported low-dimensional polyimide networks. , 2008, Journal of the American Chemical Society.

[37]  D. Amabilino,et al.  Unique intermolecular reaction of simple porphyrins at a metal surface gives covalent nanostructures. , 2008, Chemical communications.

[38]  F. Rosei,et al.  Self-assembly of rubrene on Cu(111) , 2008, Nanotechnology.

[39]  T. Jung,et al.  Transforming surface coordination polymers into covalent surface polymers: linked polycondensed aromatics through oligomerization of N-heterocyclic carbene intermediates. , 2008, Angewandte Chemie.

[40]  Kurt V Gothelf,et al.  Surface synthesis of 2D branched polymer nanostructures. , 2008, Angewandte Chemie.

[41]  Dmitrii F. Perepichka,et al.  Extending Polymer Conjugation into the Second Dimension , 2009, Science.