Goodness-of-fit tests based on empirical characteristic functions

A class of goodness-of-fit tests based on the empirical characteristic function is studied. They can be applied to continuous as well as to discrete or mixed data with any arbitrary fixed dimension. The tests are consistent against any fixed alternative for suitable choices of the weight function involved in the definition of the test statistic. The bootstrap can be employed to estimate consistently the null distribution of the test statistic. The goodness of the bootstrap approximation and the power of some tests in this class for finite sample sizes are investigated by simulation.

[1]  Ioannis A. Koutrouvelis,et al.  A goodness-of-fit test of simple hypotheses based on the empirical characteristic function , 1980 .

[2]  G. Gregory,et al.  Large Sample Theory for $U$-Statistics and Tests of Fit , 1977 .

[3]  A. Feuerverger,et al.  The Empirical Characteristic Function and Its Applications , 1977 .

[4]  G. Jogesh Babu,et al.  Goodness-of-fit tests when parameters are estimated , 2004 .

[5]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[6]  M. Jiménez-Gamero,et al.  A bootstrap algorithm for the two-sample problem using trigonometric Hermite spline interpolation , 2004 .

[7]  S. Csőrgő Limit Behaviour of the Empirical Characteristic Function , 1981 .

[8]  Arjun K. Gupta,et al.  Additive properties of skew normal random vectors , 2004 .

[9]  Sándor Csörgő,et al.  The Empirical Characteristic Process When Parameters Are Estimated , 1981 .

[10]  Joseph P. Romano A Bootstrap Revival of Some Nonparametric Distance Tests , 1988 .

[11]  Simos G. Meintanis,et al.  Tests for normal mixtures based on the empirical characteristic function , 2005, Comput. Stat. Data Anal..

[12]  T. W. Epps Tests for location-scale families based on the empirical characteristic function , 2005 .

[13]  Joaquín Muñoz-García,et al.  A test for the two-sample problem based on empirical characteristic functions , 2008, Comput. Stat. Data Anal..

[14]  N. Henze,et al.  A consistent test for multivariate normality based on the empirical characteristic function , 1988 .

[15]  S. Csörgo Multivariate empirical characteristic functions , 1981 .

[16]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[17]  D. Rubin The Bayesian Bootstrap , 1981 .

[18]  Rafael Pino-Mejías,et al.  Bootstrapping parameter estimated degenerate U and V statistics , 2003 .

[19]  S. Weisberg,et al.  An Introduction to Regression Graphics , 1994 .

[20]  Simos G. Meintanis,et al.  Invariant tests for symmetry about an unspecified point based on the empirical characteristic function , 2003 .

[21]  Norbert Henze,et al.  A New Approach to the BHEP Tests for Multivariate Normality , 1997 .

[22]  Yanqin Fan,et al.  Goodness-of-Fit Tests for a Multivariate Distribution by the Empirical Characteristic Function , 1997 .

[23]  K. Singleton,et al.  An omnibus test for the two-sample problem using the empirical characteristic function , 1986 .

[24]  R. Pino Mejías,et al.  Testing goodness of fit for the distribution of errors in multivariate linear models , 2005 .

[25]  Ioannis A. Koutrouvelis,et al.  A Goodness-of-fit Test based on the Empirical Characteristic Function when Parameters must be Estimated , 1981 .

[26]  W. Stute,et al.  Bootstrap based goodness-of-fit-tests , 1993 .

[27]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[28]  George Iliopoulos,et al.  Fourier methods for testing multivariate independence , 2008, Comput. Stat. Data Anal..

[29]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[30]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[31]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[32]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[33]  N. Henze,et al.  Recent and classical tests for normality - a comparative study , 1989 .

[34]  Byron J. T. Morgan,et al.  Integrated squared error estimation of normal mixtures , 2004, Comput. Stat. Data Anal..

[35]  T. W. Epps Limiting behavior of the ICF test for normality under Gram–Charlier alternatives , 1999 .

[36]  J. Gani,et al.  Contributions to Probability. , 1984 .

[37]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[38]  A. Azzalini The Skew‐normal Distribution and Related Multivariate Families * , 2005 .

[39]  P. Hall,et al.  Amendments and Corrections: A Test for Normality Based on the Empirical Characteristic Function , 1983 .

[40]  Yanqin Fan GOODNESS-OF-FIT TESTS BASED ON KERNEL DENSITY ESTIMATORS WITH FIXED SMOOTHING PARAMETERS , 1998, Econometric Theory.

[41]  M. V. Alba,et al.  A homogeneity test based on empirical characteristic functions , 2001 .

[42]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .