Face Recognition from a Tabula Rasa Perspective

In this paper a system for face recognition from a tabula rasa (i.e. blank slate) perspective is described. A priori, the system has the only ability to detect automatically faces and represent them in a space of reduced dimension. Later, the system is exposed to over 400 different identities, observing its recognition performance evolution. The preliminary results achieved indicate on the one side that the system is able to reject most of unknown individuals after an initialization stage. On the other side the ability to recognize known individuals (or revisitors) is still far from being reliable. However, the observation of the recognition evolution results for individuals frequently met suggests that the more meetings are held, the lower recognition error is achieved

[1]  V. Bruce,et al.  Face Recognition in Poor-Quality Video: Evidence From Security Surveillance , 1999 .

[2]  Jiri Matas,et al.  XM2VTSDB: The Extended M2VTS Database , 1999 .

[3]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[4]  Luis Torres,et al.  Automatic face recognition for video indexing applications , 2002, Pattern Recognit..

[5]  Oscar Déniz-Suárez,et al.  Real-time detection of faces in video streams , 2005, The 2nd Canadian Conference on Computer and Robot Vision (CRV'05).

[6]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Jun Fan,et al.  Online face recognition system for videos based on modified probabilistic neural networks , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[8]  B. Schiele,et al.  Fast and Robust Face Finding via Local Context , 2003 .

[9]  Modesto Castrillón,et al.  Face recognition using independent component analysis and support vector machines , 2003 .

[10]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[11]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[13]  P. Hancock,et al.  Robust representations for face recognition: The power of averages , 2005, Cognitive Psychology.

[14]  Guerra Artal,et al.  Contribuciones al seguimiento visual precategórico , 2002 .

[15]  Nicola Brace,et al.  The psychology of human face recognition , 2000 .

[16]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Matthew Turk,et al.  Computer vision in the interface , 2004, CACM.

[18]  Narendra Ahuja,et al.  Learning to recognize objects , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[19]  Lijin Aryananda,et al.  Recognizing and remembering individuals: online and unsupervised face recognition for humanoid robot , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[21]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[22]  Heinrich H. Bülthoff,et al.  Automatic acquisition of exemplar-based representations for recognition from image sequences , 2001, CVPR 2001.

[23]  Marian Stewart Bartlett,et al.  Independent components of face images : A representation for face recognition , 1997 .

[24]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[25]  Oscar Déniz-Suárez,et al.  Face recognition using independent component analysis and support vector machines , 2001, Pattern Recognit. Lett..

[26]  Jean-Philippe Thiran,et al.  The BANCA Database and Evaluation Protocol , 2003, AVBPA.

[27]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[28]  Alex Pentland,et al.  Looking at People: Sensing for Ubiquitous and Wearable Computing , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  G. Pike,et al.  When Seeing should not be Believing: Photographs, Credit Cards and Fraud , 1997 .