Calculating the Power Residue Symbol and Ibeta: Applications of Computing the Group Structure of the Principal Units of a p-adic Number Field Completion

In the recent PhD thesis of Bouw, an algorithm is examined that computes the group structure of the principal units of a p-adic number field completion. In the same thesis, this algorithm is used to compute Hilbert norm residue symbols. In the present paper, we will demonstrate two other applications. The first application is the computation of an important invariant of number field completions, called ibeta. The algorithm that computes ibeta is deterministic and runs in polynomial time. The second application uses Hilbert norm residue symbols and yields a probabilistic algorithm that computes the m-th power residue symbol (α/b)m in arbitrary number fields K. This probabilistic algorithm relies on LLL-reduction and sampling of near-primes. Using heuristics, we analyse its complexity to be polynomial expected time in n = [K :Q], log |ΔK| and the input bit size -- a tentative conclusion corroborated by timing experiments. An implementation of the algorithm in Magma will be available https://github.com/kodebro/powerresiduesymbol.

[1]  F. Deland 1978. , 2021, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[2]  P. Gahinet,et al.  1995 , 2018, Syria 1975/76-2018.

[3]  S. Hewitt,et al.  2008 , 2018, Los 25 años de la OMC: Una retrospectiva fotográfica.

[4]  Marius Overholt A Course in Analytic Number Theory , 2014 .

[5]  Phong Q. Nguyen,et al.  The LLL Algorithm - Survey and Applications , 2009, Information Security and Cryptography.

[6]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[7]  Franz Lemmermeyer,et al.  Reciprocity Laws: From Euler to Eisenstein , 2000 .

[8]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[9]  A. K. Lenstra,et al.  The Development of the Number Field Sieve , 1993 .

[10]  I. Stewart,et al.  Algebraic Number Theory , 1992, All the Math You Missed.

[11]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[12]  Peter Stevenhagen,et al.  THE ARITHMETIC OF NUMBER RINGS , 2008 .

[13]  J. Serre Une ≪formule de masse≫ pour les extensions totalement ramifiées de degré donné d’un corps local , 2003 .

[14]  Mario Daberkow,et al.  On Computations in Kummer Extensions , 2001, J. Symb. Comput..

[15]  Henri Cohen,et al.  Advanced topics in computational number theory , 2000 .

[16]  Carl Pomerance,et al.  A Tale of Two Sieves , 1998 .

[17]  Kenneth J. Giuliani Factoring Polynomials with Rational Coeecients , 1998 .

[18]  H. Lenstra Computing Jacobi symbols in algebraic number fields , 1995 .

[19]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[20]  W. Narkiewicz Elementary and Analytic Theory of Algebraic Numbers , 1990 .

[21]  N. Koblitz p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .