Wie läuft die Entstehung und Progression eines Optikusschadens bei einem primären Offenwinkelglaukom ab und welche Bedeutung haben diese Erkenntnisse für die Glaukomdiagnostik?
暂无分享,去创建一个
[1] C. Erb. Zusammenhang zwischen oxidativem Stress und immunologischen Störungen beim Glaukom , 2014 .
[2] Paul P. Lee,et al. An assessment of the health and economic burdens of glaucoma. , 2011, American journal of ophthalmology.
[3] I. Grierson,et al. Inducers of cross-linked actin networks in trabecular meshwork cells. , 2011, Investigative ophthalmology & visual science.
[4] Chris A. Johnson,et al. Assessment of linear-scale indices for perimetry in terms of progression in early glaucoma , 2011, Vision Research.
[5] B. Bengtsson,et al. Optic disc classification by the Heidelberg Retina Tomograph and by physicians with varying experience of glaucoma , 2011, Eye.
[6] R. Fuchshofer. The pathogenic role of transforming growth factor-β2 in glaucomatous damage to the optic nerve head. , 2011, Experimental eye research.
[7] F. Gao,et al. A Joint Model for Prognostic Effect of Biomarker Variability on Outcomes: long-term intraocular pressure (IOP) fluctuation on the risk of developing primary open-angle glaucoma (POAG). , 2011, JP journal of biostatistics.
[8] T. Wong,et al. Determinants of image quality of Heidelberg Retina Tomography II and its association with optic disc parameters in a population-based setting. , 2011, American journal of ophthalmology.
[9] Barry B. Lee,et al. Responses of primate retinal ganglion cells to perimetric stimuli. , 2011, Investigative ophthalmology & visual science.
[10] B. Nan,et al. The relationship between components of metabolic syndrome and open-angle glaucoma. , 2010, Ophthalmology.
[11] Jesse Richman,et al. Importance of visual acuity and contrast sensitivity in patients with glaucoma. , 2010, Archives of ophthalmology.
[12] D. Chen,et al. Dynamic patterns of histone lysine methylation in the developing retina. , 2010, Investigative ophthalmology & visual science.
[13] T. Zeyen,et al. Reversal of optic disc cupping with improvement of visual field and stereometric parameters after trabeculectomy in young adult patients (two case reports). , 2010, Bulletin de la Societe belge d'ophtalmologie.
[14] P. Ramulu. Glaucoma and disability: which tasks are affected, and at what stage of disease? , 2009, Current opinion in ophthalmology.
[15] Beatriz Munoz,et al. Glaucoma and reading speed: the Salisbury Eye Evaluation project. , 2009, Archives of ophthalmology.
[16] A. Harris,et al. Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma? , 2008, Clinical ophthalmology.
[17] R. Leblanc,et al. Canadian Glaucoma Study: 2. risk factors for the progression of open-angle glaucoma. , 2008, Archives of ophthalmology.
[18] B. Bengtsson,et al. Glaucomatous retinal nerve fibre layer defects may be identified in Stratus OCT images classified as normal , 2008, Acta ophthalmologica.
[19] C. Ramsay,et al. Screening tests for detecting open-angle glaucoma: systematic review and meta-analysis. , 2008, Investigative ophthalmology & visual science.
[20] M. Pinazo-Durán,et al. Oxidative Stress in Primary Open-angle Glaucoma , 2008, Journal of glaucoma.
[21] J. Kornhuber,et al. Increased Homocysteine Levels in Tear Fluid of Patients with Primary Open-Angle Glaucoma , 2008, Ophthalmic Research.
[22] G. Gamble,et al. Risk factors for first presentation of glaucoma with significant visual field loss , 2008, Clinical & experimental ophthalmology.
[23] J. Ge,et al. Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants. , 2008, Investigative ophthalmology & visual science.
[24] C. Erb,et al. Funktionelle Glaukomdiagnostik , 2008, Der Ophthalmologe.
[25] M. C. Leske,et al. Predictors of long-term progression in the early manifest glaucoma trial. , 2007, Ophthalmology.
[26] C. Leung,et al. Glial cells and glaucomatous neuropathy. , 2007, Chinese medical journal.
[27] W. Gu,et al. Reactive oxygen species mediates the apoptosis induced by transforming growth factor beta(2) in human lens epithelial cells. , 2007, Biochemical and biophysical research communications.
[28] Christian Y. Mardin,et al. Interobserver variability in confocal optic nerve analysis (HRT) , 2007, International Ophthalmology.
[29] Hiroshi Ishikawa,et al. Effect of corneal drying on optical coherence tomography. , 2006, Ophthalmology.
[30] K. Abu-Amero,et al. Mitochondrial abnormalities in patients with primary open-angle glaucoma. , 2006, Investigative ophthalmology & visual science.
[31] S. Hamstra,et al. Depth perception deficits in glaucoma suspects , 2006, British Journal of Ophthalmology.
[32] H. Hussin,et al. Clinical evaluation of frequency doubling technology perimetry using the Humphrey Matrix 24-2 threshold strategy , 2005, British Journal of Ophthalmology.
[33] Chris A Johnson,et al. Psychophysical Investigation of Ganglion Cell Loss in Early Glaucoma , 2005, Journal of glaucoma.
[34] D. Kook,et al. Transforming growth factor-beta 2 modulated extracellular matrix component expression in cultured human optic nerve head astrocytes. , 2005, Investigative ophthalmology & visual science.
[35] M. C. Leske,et al. Reduction of intraocular pressure and glaucoma progression , 2003 .
[36] Lene Martin,et al. Concordance of High-Pass Resolution Perimetry and Frequency-Doubling Technology Perimetry Results in Glaucoma: No Support for Selective Ganglion Cell Damage , 2003, Journal of glaucoma.
[37] Barry B. Lee,et al. An examination of physiological mechanisms underlying the frequency-doubling illusion. , 2002, Investigative ophthalmology & visual science.
[38] D. F. Andrews,et al. A one-hit model of cell death in inherited neuronal degenerations , 2000, Nature.
[39] H. Quigley,et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. , 2000, Investigative ophthalmology & visual science.
[40] P. Kaufman,et al. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. , 2000, Archives of ophthalmology.
[41] Hideya Uchida,et al. Retinal ganglion cell death in experimental glaucoma , 2000, The British journal of ophthalmology.
[42] B. Prum,et al. The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration , 2000 .
[43] T. Good,et al. Pulsatile shear stress leads to DNA fragmentation in human SH‐SY5Y neuroblastoma cell line , 1999, The Journal of physiology.
[44] S M Podos,et al. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. , 1996, Archives of ophthalmology.
[45] R. Tripathi,et al. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. , 1994, Experimental eye research.
[46] M. Shirakashi,et al. Intraocular pressure-dependent progression of visual field loss in advanced primary open-angle glaucoma: a 15-year follow-up. , 1993, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.
[47] L Dandona,et al. Selective effects of experimental glaucoma on axonal transport by retinal ganglion cells to the dorsal lateral geniculate nucleus. , 1991, Investigative ophthalmology & visual science.
[48] J. Jonas,et al. Morphometry of the human lamina cribrosa surface. , 1991, Investigative ophthalmology & visual science.
[49] E. Gramer,et al. Sensitivät der Rauschfeldkampimetrie als Screeninguntersuchung bei Glaukom , 1991 .
[50] E. Aulhorn,et al. Rauschfeldkampimetrie - Eine neuartige perimetrische Untersuchungsweise , 1988 .
[51] W. Green,et al. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. , 1982, Archives of ophthalmology.