Wie läuft die Entstehung und Progression eines Optikusschadens bei einem primären Offenwinkelglaukom ab und welche Bedeutung haben diese Erkenntnisse für die Glaukomdiagnostik?

Zusammenfassung Aufgrund der meist langwierigen Prozesse bei der Entwicklung einer glaukomatösen Optikusneuropathie kommt es bei den retinalen Ganglienzellen nicht spontan zu einem Zelluntergang, sondern zu einem schleichenden Zelltod. Daraus begründet sich die Vorstellung, dass funktionelle Tests besser geeignet sind für die Frühdiagnostik eines primären Offenwinkelglaukoms als bildgebende Verfahren, die erst dann Veränderungen aufzeigen können, wenn die retinalen Ganglienzellen und mit ihnen die retinalen Nervenfasern am Ende der biologischen Kaskade zugrunde gegangen sind. Durch neue perimetrische Verfahren wird die Frühdiagnostik beim Glaukom verbessert.

[1]  C. Erb Zusammenhang zwischen oxidativem Stress und immunologischen Störungen beim Glaukom , 2014 .

[2]  Paul P. Lee,et al.  An assessment of the health and economic burdens of glaucoma. , 2011, American journal of ophthalmology.

[3]  I. Grierson,et al.  Inducers of cross-linked actin networks in trabecular meshwork cells. , 2011, Investigative ophthalmology & visual science.

[4]  Chris A. Johnson,et al.  Assessment of linear-scale indices for perimetry in terms of progression in early glaucoma , 2011, Vision Research.

[5]  B. Bengtsson,et al.  Optic disc classification by the Heidelberg Retina Tomograph and by physicians with varying experience of glaucoma , 2011, Eye.

[6]  R. Fuchshofer The pathogenic role of transforming growth factor-β2 in glaucomatous damage to the optic nerve head. , 2011, Experimental eye research.

[7]  F. Gao,et al.  A Joint Model for Prognostic Effect of Biomarker Variability on Outcomes: long-term intraocular pressure (IOP) fluctuation on the risk of developing primary open-angle glaucoma (POAG). , 2011, JP journal of biostatistics.

[8]  T. Wong,et al.  Determinants of image quality of Heidelberg Retina Tomography II and its association with optic disc parameters in a population-based setting. , 2011, American journal of ophthalmology.

[9]  Barry B. Lee,et al.  Responses of primate retinal ganglion cells to perimetric stimuli. , 2011, Investigative ophthalmology & visual science.

[10]  B. Nan,et al.  The relationship between components of metabolic syndrome and open-angle glaucoma. , 2010, Ophthalmology.

[11]  Jesse Richman,et al.  Importance of visual acuity and contrast sensitivity in patients with glaucoma. , 2010, Archives of ophthalmology.

[12]  D. Chen,et al.  Dynamic patterns of histone lysine methylation in the developing retina. , 2010, Investigative ophthalmology & visual science.

[13]  T. Zeyen,et al.  Reversal of optic disc cupping with improvement of visual field and stereometric parameters after trabeculectomy in young adult patients (two case reports). , 2010, Bulletin de la Societe belge d'ophtalmologie.

[14]  P. Ramulu Glaucoma and disability: which tasks are affected, and at what stage of disease? , 2009, Current opinion in ophthalmology.

[15]  Beatriz Munoz,et al.  Glaucoma and reading speed: the Salisbury Eye Evaluation project. , 2009, Archives of ophthalmology.

[16]  A. Harris,et al.  Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma? , 2008, Clinical ophthalmology.

[17]  R. Leblanc,et al.  Canadian Glaucoma Study: 2. risk factors for the progression of open-angle glaucoma. , 2008, Archives of ophthalmology.

[18]  B. Bengtsson,et al.  Glaucomatous retinal nerve fibre layer defects may be identified in Stratus OCT images classified as normal , 2008, Acta ophthalmologica.

[19]  C. Ramsay,et al.  Screening tests for detecting open-angle glaucoma: systematic review and meta-analysis. , 2008, Investigative ophthalmology & visual science.

[20]  M. Pinazo-Durán,et al.  Oxidative Stress in Primary Open-angle Glaucoma , 2008, Journal of glaucoma.

[21]  J. Kornhuber,et al.  Increased Homocysteine Levels in Tear Fluid of Patients with Primary Open-Angle Glaucoma , 2008, Ophthalmic Research.

[22]  G. Gamble,et al.  Risk factors for first presentation of glaucoma with significant visual field loss , 2008, Clinical & experimental ophthalmology.

[23]  J. Ge,et al.  Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants. , 2008, Investigative ophthalmology & visual science.

[24]  C. Erb,et al.  Funktionelle Glaukomdiagnostik , 2008, Der Ophthalmologe.

[25]  M. C. Leske,et al.  Predictors of long-term progression in the early manifest glaucoma trial. , 2007, Ophthalmology.

[26]  C. Leung,et al.  Glial cells and glaucomatous neuropathy. , 2007, Chinese medical journal.

[27]  W. Gu,et al.  Reactive oxygen species mediates the apoptosis induced by transforming growth factor beta(2) in human lens epithelial cells. , 2007, Biochemical and biophysical research communications.

[28]  Christian Y. Mardin,et al.  Interobserver variability in confocal optic nerve analysis (HRT) , 2007, International Ophthalmology.

[29]  Hiroshi Ishikawa,et al.  Effect of corneal drying on optical coherence tomography. , 2006, Ophthalmology.

[30]  K. Abu-Amero,et al.  Mitochondrial abnormalities in patients with primary open-angle glaucoma. , 2006, Investigative ophthalmology & visual science.

[31]  S. Hamstra,et al.  Depth perception deficits in glaucoma suspects , 2006, British Journal of Ophthalmology.

[32]  H. Hussin,et al.  Clinical evaluation of frequency doubling technology perimetry using the Humphrey Matrix 24-2 threshold strategy , 2005, British Journal of Ophthalmology.

[33]  Chris A Johnson,et al.  Psychophysical Investigation of Ganglion Cell Loss in Early Glaucoma , 2005, Journal of glaucoma.

[34]  D. Kook,et al.  Transforming growth factor-beta 2 modulated extracellular matrix component expression in cultured human optic nerve head astrocytes. , 2005, Investigative ophthalmology & visual science.

[35]  M. C. Leske,et al.  Reduction of intraocular pressure and glaucoma progression , 2003 .

[36]  Lene Martin,et al.  Concordance of High-Pass Resolution Perimetry and Frequency-Doubling Technology Perimetry Results in Glaucoma: No Support for Selective Ganglion Cell Damage , 2003, Journal of glaucoma.

[37]  Barry B. Lee,et al.  An examination of physiological mechanisms underlying the frequency-doubling illusion. , 2002, Investigative ophthalmology & visual science.

[38]  D. F. Andrews,et al.  A one-hit model of cell death in inherited neuronal degenerations , 2000, Nature.

[39]  H. Quigley,et al.  Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. , 2000, Investigative ophthalmology & visual science.

[40]  P. Kaufman,et al.  Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. , 2000, Archives of ophthalmology.

[41]  Hideya Uchida,et al.  Retinal ganglion cell death in experimental glaucoma , 2000, The British journal of ophthalmology.

[42]  B. Prum,et al.  The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration , 2000 .

[43]  T. Good,et al.  Pulsatile shear stress leads to DNA fragmentation in human SH‐SY5Y neuroblastoma cell line , 1999, The Journal of physiology.

[44]  S M Podos,et al.  Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. , 1996, Archives of ophthalmology.

[45]  R. Tripathi,et al.  Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. , 1994, Experimental eye research.

[46]  M. Shirakashi,et al.  Intraocular pressure-dependent progression of visual field loss in advanced primary open-angle glaucoma: a 15-year follow-up. , 1993, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[47]  L Dandona,et al.  Selective effects of experimental glaucoma on axonal transport by retinal ganglion cells to the dorsal lateral geniculate nucleus. , 1991, Investigative ophthalmology & visual science.

[48]  J. Jonas,et al.  Morphometry of the human lamina cribrosa surface. , 1991, Investigative ophthalmology & visual science.

[49]  E. Gramer,et al.  Sensitivät der Rauschfeldkampimetrie als Screeninguntersuchung bei Glaukom , 1991 .

[50]  E. Aulhorn,et al.  Rauschfeldkampimetrie - Eine neuartige perimetrische Untersuchungsweise , 1988 .

[51]  W. Green,et al.  Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. , 1982, Archives of ophthalmology.